CCCSS February 2010 Newsletter.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ponytail Plant - ARID DOME
8/25/2009 Ponytail Plant - ARID DOME The ponytail plant grows in the Arid Dome. It is sometimes wrongly called the ponytail palm, but it is more closely related to agave or yucca than palm trees. These related plants are native to Mexico. They used to be in the same botanical family, but recent reclassification has separated them into different families. The scientific name is Beaucarnea recurvata. The common name ponytail plant comes from the thick mop of long, straplike leaves that are in a cluster at the top of the plant. The tree keeps its leaves and replaces them only when they are removed by a storm or other injury. This plant is something like a camel because it can survive for long dry periods using the water that is stored in its swollen trunk. The bark of the swollen base of the plant looks very much like the rough skin of an elephant, so another common name for this plant is “elephant foot.” Ponytail plants can grow to 6 feet in a container, but grow to 30 feet outdoors. They grow very slowly. This makes them good house plants because they do not need a lot of care and do not outgrow their pots for a long time. Seeds and plants are available at many commercial websites, such as gflora.com which provided the image accompanying this article. Mature plants produce many, small, creamy-white flowers on long panicles. You can sometimes see them in bloom at the Domes. They may flower two or three times a year. -
H3.3 Macaronesian Inland Cliff
European Red List of Habitats - Screes Habitat Group H3.3 Macaronesian inland cliff Summary The perennial vegetation of crevices and ledges of cliff faces in Macaronesia away from coastal salt-spray is of very diverse character - some, for example, dominated by succulents, others rich in ferns and bryophytes characteristic of shaded situations - and it includes several hundreds of taxa endemic to the archipelagoes. The main threats are mountaineering and rock climbing, outdoor sports and leisure activities, and construction of infrastructures such as roads and motorways. Synthesis There is no evidence of significant past reductions, either in the last 50 years or historically, and also future prospects are good, as no serious threats are envisaged, besides touristic/leisure activities and putative faulty environmental impact assessments that may overlook this habitat as valuable. Reduction in quantity, reduction in quality and criteria of geographic distribution yield the Least Concern (LC) category. In spite of the LC category, conservation policy and management should restrict to the maximum any threat to or reduction of the habitat, as it has a very high conservation value, because of high endemism of species and communities with many local and regional variaties. Overall Category & Criteria EU 28 EU 28+ Red List Category Red List Criteria Red List Category Red List Criteria Least Concern - Least Concern - Sub-habitat types that may require further examination Four general subtypes can be distinguished based on species composition and different ecological conditions. However, at present, no data are available to carry out an individual assessment of each of them. In the future, if detailed plot sampling has been carried out, such an evaluation may be possible. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Aeonium Webb & Berthelot in Gibraltar
Comunicaciones 1 HE GENUS AEONIUM WEBB & BERTHELOT IN GIBRALTAR Brian M. Lamb /Conservador del Gibraltar Botanic Gardens The genus Aeonium Webb & Berthelot belongs to the family Crassulaceae often refered to as the Houseleek family. Some 32 species are endemic to the Canary Islands, two to the Cape Verde Islands, two to Madeira, one to Morocco and possibly today three on the other side of Africa from northem Kenya through to Arabia. The three species that can be seen in Gibraltar are: A. undulatum native to Gran Canaria A. haworthii native to Tenerife A. arboreum native to Morocco. The two Canarian Aeoniums have almost certainly been introduced by man, probably during the latter part of the 19th century, particularly A. ~indulatumwhich is usually only found as a cultivated plant grown only on a small scale. However, A. haworthii is to be found in a number of places in Gibraltar, as naturalised colonies growing from pockets or fissures in the limestone rock, particularly on the eastem side, southwards from Catalan Bay, while on the westem side a sizeable colony exists below Bleak House and a small one is now forming near Camp Bay, growing in association with native Sedum. A. haworthii seems to be quite a popular patio and verandah plant, as it is not a giant growing species, and has lovely red edged glaucous leaves. The flower colour is variable, from white or pale yellow through to rose-pink. The seeds ofAeonium are very small, as with most members of the family Crassulacease, produced in great abundance, and are easily distributed by the wind. -
Winter/Spring 2014
UNIVERSITY of CALIFORNIA BOTANICAL GARDEN NEWSLETTER Vol. 38 Numbers 1 & 2 | Published by the UNIVERSITY of CALIFORNIA BOTANICAL GARDEN at BERKELEY | Winter/ Spring 2014 The New World Desert Collection 'HVHUWV DUH RIWHQ GH¿QHG DV areas receiving less than 254 mm (10 in) of rainfall each year. Given that the Garden typically receives over 500 mm (20 in), this collection is a horticultural challenge. The Garden’s heavy clay soil has been greatly amended with expanded shale to improve drainage and reduce the incidence of diseases and pests, especially nematodes. Recent efforts to improve plant health with the application of compost tea and organic top dressing has shown good results, with renewed vigor DQGPRUHSUROL¿FÀRZHULQJRIPDQ\ FDFWL%HQH¿FLDOQHPDWRGHVDUHDOVR The hot south-facing exposure and rocky hardscape of the New World Desert provide a dramatic experience in the Garden. employed to keep the harmful ones Photo by Janet Williams in check. stablished early on in the Garden’s history in Strawberry Canyon, the New World Desert (NWD) is an iconic display of arid land plants from North and South America. EIt really started to take shape in the 1930s with the addition of plants collected during the Garden’s expeditions to the Andes. These expeditions focused on Peru and Chile, with forays into Bolivia. Botanical and personal highlights of these expeditions are documented in Garden Director T. Harper Goodspeed’s book, Plant Hunters of the Andes, published in 1961. The most recent desert expedition was to Baja California in 1986, led by then curator Dr. James Affolter and included Horticulturists Kurt Zadnik and Roger Raiche and current volunteer Fred Dortort. -
Effect of Media Type and BAP Concentrations on Micropropagation During Multiplication Stage on Ponytail Palm (Beaucarnea Recurvata Lem.) Abdel Kawy, Waly; Yehia M
Hortscience Journal of Suez Canal University, 2018 Effect of Media Type and BAP Concentrations on Micropropagation during Multiplication Stage on Ponytail Palm (Beaucarnea recurvata Lem.) Abdel Kawy, Waly; Yehia M. Abdel Fattah and Ali A. Shoman Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Received: 28/10/2018 Abstract: Ponytail palm (Beaucarnea recurvet Lem.; Family Asparagaceae) is one of the most important plants in the internal and external coordination. This work was carried out to study the effect of media type (MS, B5 and WPM) and Benzylaminopurine BAP at 0, 0.2, 0.4 and 0.6 mg/l during multiplication stage. The shoot tips were collected from in vitro seedlings cultured on MS medium without growth regulators. B5 medium supplemented with 0.4 mg/l (BAP) increased number of shoots (3.40 shoots/clump) and number of leaves (24) plant compared with other treatments. The B5 medium is preferable within mass production and featured commercial. The BAP Concentration 0.4 mg/l promotes shoots initiation and development with B5 medium more than MS and WPM. Keywords: Ponytail palm, Beaucarnea recurvata, tissue culture, micropropagation, BAP, media type, MS, B5, WPM INTRODUCTION MATERIALS AND METHODS Beaucarnea (Asparagaceae) is a Mexican and This study was carried out in the plant tissue Guatemalan genus that inhabits dry tropical areas. Most culture laboratory in the Department of Horticulture, of the species are endangered under the Mexican Faculty of Agriculture, Suez Canal University, Ismailia legislation because they have a high horticultural during the period 2013 – 2015. demand and are threatened by habitat destruction. -
Changing Attitudes See Page 5
LNewsletteret’s of the San DiegoT Horticulturalalk Society Plants!July 2008, Number 166 Changing Attitudes SEE PAGE 5 PASTA SALADS PAGE 7 Nepenthes PAGE 8 Creating a Zen Garden PAGE 9 Consider Conifers PAGE 11 On the Cover: Chanticleer: a pleasure garden IMAGES FROM THE 2008 San DIEGO COUNTY FaiR Photo by Amelia Lima Photo by Photo by Amelia Lima Photo by San Diego Horticultural Society Amelia Lima Photo by Photo by Amelia Lima Photo by Palomar Cactus and Succulent Society Photo by Amelia Lima Photo by Photo by Katie Pelisek Photo by Quail Botanical Gardens and the San Diego County Water Authority Fair Entry Garden 2 Let’s Talk Plants! July 2008, No. 166 San Diego Horticultural Society In This Issue... The San Diego Horticultural Society 4 Important Member Information Meetings 5 To Learn More... The San Diego Horticultural Society meets the 2nd Monday of every month (except June) from 5 Thanks Fair Volunteers and Donors 6:00pm to 9:00pm at the Surfside Race Place, Del Mar Fairgrounds, 2260 Jimmy Durante Blvd. 5 From The Board Meetings are open and all are welcome to attend. We encourage you to join the organization to enjoy free admission to regular monthly meetings, receive the monthly newsletter and 7 Plants That Produce numerous other benefits. We are a 501(c)(3) non-profit organization. 7 Garden Gourmet Meeting Schedule 8 Nepenthes: Common Ways to Grow an 5:00 – 6:00 Meeting room setup Uncommon Plant 6:00 – 6:45 Vendor sales, opportunity drawing ticket sales, lending library 8 Molecular Biology in the Garden: Part 11 6:45 – 8:00 Announcements, speaker, drawing for three plants 9 Welcome New Members! 8:00 – 8:15 Break for vendor sales, opportunity drawing ticket sales, lending library 8:15 – 9:00 Plant forum and opportunity drawing. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
South Laguna Biological Resources Inventory
SOUTH LAGUMA BIOLOGICAL RESOURCES INVENTORY Prepared for the City of Laguna Beach By Karl in G. Marsh, Biological Consul tant January 20, 1992 Karlin C. Marsh Biological Consultant 30262 Acorn Lane, P.O. Box 404, Silverado, California 92676 714/649-202 7 SOUTH LAGUNA BIOLOGICAL RESOURCES INVENTORY Prepared for the City of Laguna Beach By Karlin 6. Marsh, Biological Consultant Uith Contributions by Fred Roberts, Jr. r Dave Bramlet r Gordon Marsh Rick Reifner January 20, 1992 Dedicated With Affection and Admiration to FREDERICK M. LAN6 Longtime champion of South Laguna's special natural resources TABLE OF CONTENTS Page INTRODUCTION 1 BOUNDARIES AND PHYSICAL SETTING 1 SURROUNDING AND ONSITE LAND USES; OWNERSHIP 3 METHODS 5 EXISTING LITERATURE 6 BIOTIC COMMUNITIES 8 MARITIME SUCCULENT SCRUB (2.2) COASTAL SAGE SCRUB (2.3) SUMAC-TOYON SOUTHERN MIXED CHAPARRAL (3.2) SOUTHERN MARITIME CHAPARRAL (3.6) ANNUAL GRASSLAND (4.1) SOUTHERN COASTAL NEEDLEGRASS GRASSLAND (4.3) RUDERAL (4.6) I SOUTHERN HARDPAN VERNAL POOL (5.1) FRESHWATER SEEP (5.3) I ALKALI MEADOW (5.2) SOUTHERN COASTAL SALT MARSH (6.1) I COASTAL BRACKISH MARSH (6.2) I COASTAL FRESHWATER MARSH (6.4) RIPARIAN HERB (7.1) I SOUTHERN WILLOW SCRUB (7.2) MULEFAT SCRUB (7.3) SOUTHERN ARROYO WILLOW FOREST (7.6) COAST LIVE OAK WOODLAND (8.1) I XERIC CLIFF FACES (10.1) I XERIC BARRENS (10.1) Page MARINE TERRACE PSAMMOPHYTE HABITAT (10.1) MESIC CLIFF FACES (10.2) ROCK OUTCROPS (10.3) PERENNIAL STREAM (13.1) INTERMITTENT STREAM (13.2) EPHEMERAL STREAM (13.3) VINEYARD AND ORCHARD (14.3) ORNAMENTAL PLANTINGS (15.5) FUEL MODIFICATION ZONES (no G.I.S. -
292-9999 Fax: (949) 574-8355
TEL: (949) 292-9999 KBD NURSERY EMAIL: [email protected] FAX: (949) 574-8355 11/20/2017 DECO SUCCULENT MIX 2.5" 4" 6 MIX 8 BOWL T= TOP SHELF SUCCULENT MIX FLATS 400 F= Flowering T SUCCULENT MIX TERRA COTA 4" (SEE PHOTO) NEW 100* HANGING BASKETS 6" 8" T Sedum Donkey Tails *1000 T Senecio Jacobsenii *500 Senecio String of Banannas T Senecio String of Pearls *50 AEONIUMS 4" Quarts 6" 8/10" 1 gal. 2/5g 15g 25g Aeonium Arboreum 100 Aeonium Atropurpureum Aeonium Crush Aeonium Cabernet 100 Aeonium Canariense Aeonium Cyclops 100 Aeoinium Haworthia 100 25 T Aeonium Lily Pad NEW 1000 *500 Aeonium Purple Blast Aeonium Sunburst Aeonium Tabuliforme-Mint Saucer 100 Aeonium Tricolor Kiwi 1000 Aeonium Urbicum- Salad Bowl 500 250 Aeonium Zwartkin Aeonium Zwartkop x Tabliforme Aeonium Zwartkop-Black Rose 100 ALOES 4" Quarts 6" 8/10" 1g 2/5g 15g 25g Aloe Aristata-Lace Aloe 200 200 Aloe Bainesii-Aloe Tree Aloe Blue Elf 1,000 250 Aloe Brevifolia-Short Leaf Aloe 200 Aloe Cameronii Aloe Ciliaris-Climbing Aloe 80 T Aloe Christmas Carol *500 100 Aloe Coral-Striata 1,000 3,000 100 Aloe Crosby Aloe Cynthia Giddy 1,000 800 Aloe Delta Lights 100 50 Aloe Dorotheae-Red Aloe Aloe Fang Aloe Ferox 100 36 Aloe Grassy Lassie 100 100 Aloe Maculata Aloe Noblis-Gold Tooth Aloe 1,000 T Aloe Pink Blush *500 30 Aloe Plicatilis-Fan Aloe 1 TEL: (949) 292-9999 KBD NURSERY EMAIL: [email protected] FAX: (949) 574-8355 11/20/2017 ALOES 4" Quarts 6" 8/10" 1g 2/5g 15g 25g Aloe Rooikoppie 500 500 F Aloe Rubroviolence *50 Aloe Traskii Aloe Torch-Arborescens 1,000 500 100 40 Aloe Variegata-Tiger -
ADRIAN HARDY HAWORTH BIOGRAPHY Chuck Staples, CSSA Historian
ADRIAN HARDY HAWORTH BIOGRAPHY Chuck Staples, CSSA Historian Haworth, Adrian Hardy (1767–1833)—during the golden time of botany, a leading author of succulent plants in England—with the ever popular Haworthia genus named in his honor. Born in Cottingham near Hull, England on 19 April 1767, Adrian Hardy Haworth became a gardener, amateur botanist, zoologist, taxonomist, ornithologist and entomologist. He was the son of Benjamin Haworth of Haworth Hall. His early education was with tutors which was directed toward a career in law. However, after his older brother inherited the estate after their father's death, and after allowing AH Haworth a sufficient allowance to give up the legal profession—at age 21 he devoted all his time to natural history pursuits of plants and insects. At Chelsea, England AH Haworth had one of the finest private gardens in all England—assembling the first important succulent collection of his time. His research work was due to regular visits to the Royal Botanic Gardens at Key, England—and the use of the library and herbarium of Sir Joseph Banks. Of special interest to the succulent plant enthusiast is the popular genus Haworthia that was named in AH Haworth's honor in 1809 by Dr Henri Auguste (1777–1814). Among the generic plants described by AH Haworth are: Duvalia, Epiphyllum, Mammillaria, Orbea, Tridentea and Tromotriche in 1812; Pectinaria in 1819; and Cephalophyllum, Hymenogyne and Monanthes in 1821. The genus Epiphyllum was first used as a name in c1689 by Dr Paul Hermann (1646-1695), but was never published by him until AH Haworth did so in 1812. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.