Winter/Spring 2014

Total Page:16

File Type:pdf, Size:1020Kb

Winter/Spring 2014 UNIVERSITY of CALIFORNIA BOTANICAL GARDEN NEWSLETTER Vol. 38 Numbers 1 & 2 | Published by the UNIVERSITY of CALIFORNIA BOTANICAL GARDEN at BERKELEY | Winter/ Spring 2014 The New World Desert Collection 'HVHUWV DUH RIWHQ GH¿QHG DV areas receiving less than 254 mm (10 in) of rainfall each year. Given that the Garden typically receives over 500 mm (20 in), this collection is a horticultural challenge. The Garden’s heavy clay soil has been greatly amended with expanded shale to improve drainage and reduce the incidence of diseases and pests, especially nematodes. Recent efforts to improve plant health with the application of compost tea and organic top dressing has shown good results, with renewed vigor DQGPRUHSUROL¿FÀRZHULQJRIPDQ\ FDFWL%HQH¿FLDOQHPDWRGHVDUHDOVR The hot south-facing exposure and rocky hardscape of the New World Desert provide a dramatic experience in the Garden. employed to keep the harmful ones Photo by Janet Williams in check. stablished early on in the Garden’s history in Strawberry Canyon, the New World Desert (NWD) is an iconic display of arid land plants from North and South America. EIt really started to take shape in the 1930s with the addition of plants collected during the Garden’s expeditions to the Andes. These expeditions focused on Peru and Chile, with forays into Bolivia. Botanical and personal highlights of these expeditions are documented in Garden Director T. Harper Goodspeed’s book, Plant Hunters of the Andes, published in 1961. The most recent desert expedition was to Baja California in 1986, led by then curator Dr. James Affolter and included Horticulturists Kurt Zadnik and Roger Raiche and current volunteer Fred Dortort. Most of the plants collected in 1986 are in the Arid House, with a few exceptions in the Baja Beds (171A, 171B). Perhaps the showiest of these is Baja fairy duster Argentine saguaro (Echinopsis terscheckiiȌ ƪ. (Calliandra californica)—it is planted on the bed margin near the Photo by James Gaither URDGDQGGLVSOD\VGR]HQVRIUHGVWDPHQVZKHQLQÀRZHU 2 University of California Botanical Garden at Berkeley NWD The crowded columnar stems of Echinopsis lamprochlora (New World Desert) and Euphorbia caerulescens (Southern African Collection) are examples of convergent evolution of form. Photos by Janet Williams The current low rainfall year provides a strong incentive The New World Desert displays 348 taxa (337 species) for choosing drought-tolerant plants for our gardens, and has in 485 accessions. The largest species representation is in the EHQH¿WHGWKH1HZ:RUOG'HVHUWSODQWLQJV7KHUHLVLQIRUPDWLRQ cactus genus Echinopsis with 43 taxa in 123 accessions, in the on how to choose these kinds of plants for your home garden and genus Agave with 36 taxa in 85 accessions and in the cactus genus IRUPDNLQJWKHPRVWHI¿FLHQWXVHRIZDWHULQ\RXUKRPHODQGVFDSH Opuntia with 17 taxa in 28 accessions. Approximately 45% of in this issue of the newsletter. Many of the drought-tolerant native the current accessions are from the 1930s – 1960s, mostly from Garden expeditions to South America. The high survivorship of these older accessions demonstrate the Garden’s suitability for growing these plants outdoors in Berkeley. Severe freezes in 1972 and 1991 were weathered relatively well by this collection. Even so, some of these accessions are also housed in greenhouses for more controlled care. The Arid House is conveniently adjacent to the New World Desert, where visitors can observe specimens that need warmer and drier conditions than can be found out of doors. While the cacti visually dominate this collection, there is diversity in other plant groups too. Over 30 kinds of terrestrial bromeliads, especially Puya, Deuterocohnia, and Hechtia, are found throughout the collection. Relatives of Agave on display include Beaucarnea, Dasylirion, Furcraea, Manfreda, Nolina and Yucca. These, along with dry-growing ferns, are planted with the cacti to show how desert plant communities can be complex and not just assemblages of cacti. In relation to the other Garden collections, the New Argentine saguaro (Echinopsis terscheckiiȌƪǡ ƥ Ǥ Photo by James Gaither World Desert has a high proportion of rare species--56 species in 75 accessions. Succulents, especially cacti, have become rare plants of the American desert southwest and northern Mexico LQKDELWDWIRUPDQ\UHDVRQVEXWFKLHÀ\GXHWRKDELWDWORVVDQGWR can’t tolerate our environmental conditions, and must be grown over-collecting or poaching. The Garden has received many cacti in doors. The South American desert species, by comparison, WKDWZHUHLOOHJDOO\LPSRUWHGLQWRWKH86DQGWKHUHIRUHFRQ¿VFDWHG perform much better in our local conditions, and hence are more at the border. As a Plant Rescue Center for the US Fish & Wildlife prominent in the outdoor collection. 6HUYLFHWKH*DUGHQFDUHVIRUWKHVHFRQ¿VFDWHGSODQWVLQSHUSHWXLW\ Winter / Spring 2014 3 NWD (ĐŽŶƟŶƵĞĚĨƌŽŵƉĂŐĞϮ) The placement of the New World Desert on a south-facing slope provides the best growing conditions for these warmth-seeking plants. The Southern African Collection, above the road, also requires these conditions, and is logically placed in juxtaposition to show the concept of convergent evolution (put simply, this is a description of how unrelated plants evolve similar structures in adapting to similar but geographically distant environmental conditions). Our docents regularly point out the similarity of the columnar cacti of the New World Desert to the columnar Euphorbia specimens from southern Africa. Late spring and early summer are the WLPHV WR VHH WKH PRVW ÀRZHUV LQ WKLV FROOHFWLRQ The tallest columnar cacti usually have white ÀRZHUVWKDWODVWMXVWDGD\HDFKWKRXJKWKHUHDUH many in succession. The color range for the cactus ÀRZHUVLVIURPZKLWHWR\HOORZRUDQJHSLQNRU red. The agaves bloom most typically in summer over a long period of weeks to months, depending on the weather. We hope you will come often to see the changes throughout the Garden. — Holly Forbes Echinopsis hertrichiana is an endangered species restricted to two populations in Peru. Photo by James Gaither Some of these rare species include iconic specimens, such as the giant cactus Echinopsis terscheckii in Bed 156. The common name is Argentine saguaro or cardón, because of its close resemblance to the giant saguaro (Carnegiea gigantea) of the American southwest. The giant saguaro doesn’t succeed outdoors Cactus Naming in Berkeley, requiring much hotter and drier conditions than the We are using The Cactus Argentine saguaro. Both species are bat pollinated. The Argentine Family by Ted Anderson, VDJXDURZKLFKKDVODUJHZKLWHÀRZHUVLQODWHVSULQJGRHVQ¶WVHW Timber Press, 2001, for our fruit in the Garden because we don’t have the type of bat that would cactus names. There are a pollinate it. It is native to northwest Argentina and was planted in ůŽƚŽĨĚŝƐƐĞŶƟŶŐŽƉŝŶŝŽŶƐ 1956 by staff member Myron Kimnach. Mr. Kimnach went on to about what is related to become the director of the Huntington Botanical Gardens near what in the cactus family Pasadena and periodically returned to visit the Garden. He always and what they should be remarked on the height of this specimen, likely taller than any in called. By using a single habitat due to our more benign conditions. reference we are able to The International Union for the Conservation of ƌĞĨĞƌƋƵĞƐƟŽŶƐƚŽŝƚĨŽƌ Nature Red List includes the cactus Echinopsis hertrichiana ƐLJŶŽŶLJŵƐ͘dŚĞ'ĂƌĚĞŶ͛ƐŶĞǁĚĂƚĂďĂƐĞ͕ŽůůĞĐƟŽŶ as endangered. Only two populations occur its natural range of ^ƉĂĐĞ͕ůĂƵŶĐŚĞĚŝŶƉƌŝůϮϬϭϯ͕ǁŝůůƌĞƚƌŝĞǀĞĐƵƌƌĞŶƚ 20 square kilometers in Peru. One of these populations is in an ŶĂŵĞƐĞǀĞŶǁŚĞŶƐLJŶŽŶLJŵƐĂƌĞƵƐĞĚŝŶĂƐĞĂƌĐŚ Inca ruins heavily visited by tourists, who disturb the habitat and window. collect this species as an ornamental. There are 21 synonyms for this species, just one example of how frequent name changes can be in the cactus family. 4 University of California Botanical Garden at Berkeley DIRECTOR’S COLUMN While the drought concerns us, it has not Center’s Ornduff Room. The deplorable condition of the roof has prevented us from continuing to care for long prevented us from fully utilizing the facility. I recall some our precious wards: the plants from around both desperate and embarrassing moments when attendees at key the world. programs had to continually move to avoid the drips and we often We are doing our best to suffered damage to our winter exhibits like Fiber & Dye. A rush preserve water in this time of drought. In was put on replacing the roof, which ironically was not tested fact, I’m excited to announce that the long for months because of the lack of rain this winter; fortunately, it Photo by Muinat Kemi Amin awaited, and desperately needed, upgrade ZRUNHGZKHQLW¿QDOO\UDLQHG WRWKH*DUGHQLUULJDWLRQV\VWHPLVQRZZHOOXQGHUZD\7KH¿UVW One of the most visible ongoing projects, which started phase of the project which was focused on the upper slopes of the in December, involved the acquisition of a spectacular Julia ͙͙͙͡ǡ Ǥ Photo by Paul Licht Morgan building from campus. The translocation of the building, about the size of our Conference Center, which was cut into four large sections for the trip up Centennial Drive, was an adventure in itself. The subsequent ongoing work to put it back together has been fascinating and distracting as well as also rather disruptive to activities in the front of the Garden. The work site has been closed, causing detours into the California Area and to the Conference Center. You will be able to enjoy this new adventure if you come for the Spring Plant Sale From left: Damaged irrigation pipe; new irrigation pipe installation. Photo by Paul Licht in April; the building site will be readied for Asian Collection (above the main road) have now been completed this event. Please note and are in use. This project was certainly not without some that the traditional times inconvenience to both our operation and visitors, especially when of the last Friday night the main road was torn up to install new main lines, but it was (member preview and well worth the it. Funds for the second phase of the work, which reception) and Saturday will extend further into the water-dependent Asian Collection, is of April has been moved ơǤ currently in the bidding phase and will hopefully start this summer.
Recommended publications
  • Ponytail Plant - ARID DOME
    8/25/2009 Ponytail Plant - ARID DOME The ponytail plant grows in the Arid Dome. It is sometimes wrongly called the ponytail palm, but it is more closely related to agave or yucca than palm trees. These related plants are native to Mexico. They used to be in the same botanical family, but recent reclassification has separated them into different families. The scientific name is Beaucarnea recurvata. The common name ponytail plant comes from the thick mop of long, straplike leaves that are in a cluster at the top of the plant. The tree keeps its leaves and replaces them only when they are removed by a storm or other injury. This plant is something like a camel because it can survive for long dry periods using the water that is stored in its swollen trunk. The bark of the swollen base of the plant looks very much like the rough skin of an elephant, so another common name for this plant is “elephant foot.” Ponytail plants can grow to 6 feet in a container, but grow to 30 feet outdoors. They grow very slowly. This makes them good house plants because they do not need a lot of care and do not outgrow their pots for a long time. Seeds and plants are available at many commercial websites, such as gflora.com which provided the image accompanying this article. Mature plants produce many, small, creamy-white flowers on long panicles. You can sometimes see them in bloom at the Domes. They may flower two or three times a year.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    SYSTEMATICS OF TRIBE TRICHOCEREEAE AND POPULATION GENETICS OF Haageocereus (CACTACEAE) By MÓNICA ARAKAKI MAKISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Mónica Arakaki Makishi 2 To my parents, Bunzo and Cristina, and to my sisters and brother. 3 ACKNOWLEDGMENTS I want to express my deepest appreciation to my advisors, Douglas Soltis and Pamela Soltis, for their consistent support, encouragement and generosity of time. I would also like to thank Norris Williams and Michael Miyamoto, members of my committee, for their guidance, good disposition and positive feedback. Special thanks go to Carlos Ostolaza and Fátima Cáceres, for sharing their knowledge on Peruvian Cactaceae, and for providing essential plant material, confirmation of identifications, and their detailed observations of cacti in the field. I am indebted to the many individuals that have directly or indirectly supported me during the fieldwork: Carlos Ostolaza, Fátima Cáceres, Asunción Cano, Blanca León, José Roque, María La Torre, Richard Aguilar, Nestor Cieza, Olivier Klopfenstein, Martha Vargas, Natalia Calderón, Freddy Peláez, Yammil Ramírez, Eric Rodríguez, Percy Sandoval, and Kenneth Young (Peru); Stephan Beck, Noemí Quispe, Lorena Rey, Rosa Meneses, Alejandro Apaza, Esther Valenzuela, Mónica Zeballos, Freddy Centeno, Alfredo Fuentes, and Ramiro Lopez (Bolivia); María E. Ramírez, Mélica Muñoz, and Raquel Pinto (Chile). I thank the curators and staff of the herbaria B, F, FLAS, LPB, MO, USM, U, TEX, UNSA and ZSS, who kindly loaned specimens or made information available through electronic means. Thanks to Carlos Ostolaza for providing seeds of Haageocereus tenuis, to Graham Charles for seeds of Blossfeldia sucrensis and Acanthocalycium spiniflorum, to Donald Henne for specimens of Haageocereus lanugispinus; and to Bernard Hauser and Kent Vliet for aid with microscopy.
    [Show full text]
  • Effect of Media Type and BAP Concentrations on Micropropagation During Multiplication Stage on Ponytail Palm (Beaucarnea Recurvata Lem.) Abdel Kawy, Waly; Yehia M
    Hortscience Journal of Suez Canal University, 2018 Effect of Media Type and BAP Concentrations on Micropropagation during Multiplication Stage on Ponytail Palm (Beaucarnea recurvata Lem.) Abdel Kawy, Waly; Yehia M. Abdel Fattah and Ali A. Shoman Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Received: 28/10/2018 Abstract: Ponytail palm (Beaucarnea recurvet Lem.; Family Asparagaceae) is one of the most important plants in the internal and external coordination. This work was carried out to study the effect of media type (MS, B5 and WPM) and Benzylaminopurine BAP at 0, 0.2, 0.4 and 0.6 mg/l during multiplication stage. The shoot tips were collected from in vitro seedlings cultured on MS medium without growth regulators. B5 medium supplemented with 0.4 mg/l (BAP) increased number of shoots (3.40 shoots/clump) and number of leaves (24) plant compared with other treatments. The B5 medium is preferable within mass production and featured commercial. The BAP Concentration 0.4 mg/l promotes shoots initiation and development with B5 medium more than MS and WPM. Keywords: Ponytail palm, Beaucarnea recurvata, tissue culture, micropropagation, BAP, media type, MS, B5, WPM INTRODUCTION MATERIALS AND METHODS Beaucarnea (Asparagaceae) is a Mexican and This study was carried out in the plant tissue Guatemalan genus that inhabits dry tropical areas. Most culture laboratory in the Department of Horticulture, of the species are endangered under the Mexican Faculty of Agriculture, Suez Canal University, Ismailia legislation because they have a high horticultural during the period 2013 – 2015. demand and are threatened by habitat destruction.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Taxonomía Y Filogenia De Trichocereus (Berg.) Riccob
    UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO ―Taxonomía y filogenia de Trichocereus (Berg.) Riccob. (Trichocereeae- Cactaceae)‖ Tesis presentada para optar al grado de Doctor en Ciencias Naturales de la Universidad Nacional de La Plata Bióloga M. Sc. Adriana Sofía Albesiano Hoyos Director: Dr. Roberto Kiesling Co-Directora: Dra. Susana Freire La Plata, Argentina Agosto 3 de 2015 COMISIÓN ASESORA Dr. Roberto Kiesling, Instituto Argentino de Investigaciones de las Zonas Áridas-IADIZA, CONICET. Dra. Susana Freire, Instituto de Botánica Darwinion-San Isidro. Prof. Titular, Cátedra de Botánica Sistemática II, Facultad Ciencias Naturales y Museo, Universidad Nacional de La Plata. DEFENSA ORAL Y PÚBLICA Lugar y Fecha: Calificación: TRIBUNAL Firma:………………………………………………………...Aclaración………… Firma:………………………………………………………...Aclaración………… Firma:………………………………………………………...Aclaración………… TABLA DE CONTENIDO AGRADECIMIENTOS .............................................................................................................................. iii RESUMEN............................................................................................................................................... iv ABSTRACT ............................................................................................................................................ viii I. INTRODUCCIÓN ................................................................................................................................... 1 II. MATERIALES Y MÉTODOS ................................................................................................................
    [Show full text]
  • Taxonomic Revision of the Chilean Puya Species (Puyoideae
    Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Author(s): Georg Zizka, Julio V. Schneider, Katharina Schulte and Patricio Novoa Source: Brittonia , 1 December 2013, Vol. 65, No. 4 (1 December 2013), pp. 387-407 Published by: Springer on behalf of the New York Botanical Garden Press Stable URL: https://www.jstor.org/stable/24692658 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Brittonia This content downloaded from 146.244.165.8 on Sun, 13 Dec 2020 04:26:58 UTC All use subject to https://about.jstor.org/terms Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Georg Zizka1'2, Julio V. Schneider1'2, Katharina Schulte3, and Patricio Novoa4 1 Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung and Johann Wolfgang Goethe-Universität, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; e-mail: [email protected]; e-mail: [email protected] 2 Biodiversity and Climate Research Center (BIK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany 3 Australian Tropical Herbarium and Tropical Biodiversity and Climate Change Centre, James Cook University, PO Box 6811, Caims, QLD 4870, Australia; e-mail: [email protected] 4 Jardin Botânico Nacional, Camino El Olivar 305, El Salto, Vina del Mar, Chile Abstract.
    [Show full text]
  • Botanical Encounters Level 3 an INTERACTIVE & VIRTUAL TOUR
    Botanical Encounters Level 3 AN INTERACTIVE & VIRTUAL TOUR Huntington Education Welcome to the Botanical Encounters Level 3 virtual tour! Each slide features a plant, tree, or flower with questions, activities, and links to additional information. Henry and Arabella Huntington loved to collect art, books, and plants. What do you like to collect? Video games? Posters? Sports memorabilia? In this interactive journey you’ll dive further into the Botanical collections. Let’s go exploring! Botanical Vocabulary Click on a vocabulary word to start your tour! Each word relates to something at The Huntington. Cryobiotechnology Ginger Orchid Passion Fruit Penjing Puya Once you have explored all six cards, click here! Pick Orchid Another The Rose Hills Foundation Conservatory for Botanical Science ● Orchids have been popular at The Huntington since Arabella Huntington’s day. She loved orchids and had quite a collection. Do you like orchids? ● In the wild, there are three ways orchids grow: on trees (epiphytes), on rocks (lithophytes), and on the ground (terrestrials). ● There are more than 25,000 species of orchids, making them the largest family in the plant kingdom. ● While all those orchid species might look different, there are two distinct characteristics they all share: they all have 3 petals and 3 sepals, and they have both male (stamen) and female (pistil) parts in one column. Activity Explore the online tour Orchids: Around the World on Six Continents. Find an orchid that catches your eye. Which orchid did you choose? Why did you pick that particular orchid? Where does it grow? Does it have any cultural or culinary significance? Click on these links to explore more Orchid Collection King of Orchids (From top): Masdevallia infracta ‘Huntington’s Angel’; Paphiopedilum Orchids Forever tigrinum ‘Huntington’s Crouching Tiger’; Trichopilia suavis.
    [Show full text]
  • Departamento De Botánica Facultad De Ciencias Naturales Y Oceanográficas Universidad De Concepción VALOR ADAPTATIVO DE LA VÍ
    Departamento de Botánica Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción VALOR ADAPTATIVO DE LA VÍA FOTOSINTÉTICA CAM PARA ESPECIES CHILENAS DEL GÉNERO PUYA (BROMELIACEAE) Tesis para optar al grado de Doctor en Ciencias Biológicas, Área de especialización Botánica IVÁN MARCELO QUEZADA ARRIAGADA Profesor guía: Dr. Ernesto Gianoli M. Profesor co-tutor: Dr. Alfredo Saldaña M. Comisión evaluadora de tesis, para optar al grado de Doctor en Ciencias Biológicas Área Botánica “Valor adaptativo de la vía fotosintética CAM para especies chilenas del género Puya (Bromeliaceae)” Dr. Ernesto Gianoli ___________________________________ Profesor Guía Dr. Alfredo Saldaña ___________________________________ Co-tutor Dr. Carlos M. Baeza ___________________________________ Dra. María Fernanda Pérez ___________________________________ Evaluadora externa Dra. Fabiola Cruces ___________________________________ Directora (S) Programa Doctorado en Botánica Septiembre 2013 1 A Paula, Leonor y Julieta 2 AGRADECIMIENTOS El completar exitosamente una tarea de esta magnitud se debe, en gran medida, a todos quienes me brindaron su apoyo, consejo o ayuda en algún punto de este largo camino. En primer lugar debo agradecer a Paula, mi esposa, amiga y compañera, por soportar conmigo estos 4 años y medio de esfuerzo, sacrificios y más de alguna recompensa. No solo ha sido soporte para mi espíritu durante todo este tiempo, sino que además fue la mejor compañera de terreno que pude haber encontrado. Agradezco también a mi hija mayor, Leonor, inspirada dibujante, talentosa fotógrafa y la mejor asistente de muestreo que existe, cuya mirada de felicidad y asombro durante los largos viajes en los que me acompañó fue el mejor recordatorio de que la vida hay que disfrutarla, siempre. También, y aunque llegó al final de este largo camino, agradezco a Julieta, quien ha sido el impulso que necesitaba para darme a la tarea de concluír este trabajo.
    [Show full text]
  • Puya Hamata Demography As an Indicator of Recent Fire
    http://www.icn.unal.edu.co/ García-MenesesCaldasia 36(1):53-69. & Ramsay 2014 PUYA HAMATA DEMOGRAPHY AS AN INDICATOR OF RECENT FIRE HISTORY IN THE PÁRAMO OF EL ÁNGEL AND VOLCÁN CHILES, ECUADOR-COLOMBIA La demografía de Puya hamata como indicador de la historia de fuegos recientes en el páramo de El Ángel y Volcán Chiles, Ecuador-Colombia PAOLA M. GARCÍA-MENESES School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom. [email protected]: Corresponding author PAUL M. RAMSAY Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, United Kingdom. [email protected] ABSTRACT High-altitude páramo grasslands are important for their biodiversity and the ecosystem services that they provide to Andean people, but they are sensitive to disturbances, such as fire. Understanding the ecological impacts of disturbance is critical for the effective management of páramos. Indicator species studies can provide a relatively efficient way to gain such understanding.Puya hamata is a flagship giant rosette plant and has potential as an indicator of recent páramo fire history. To determine population size structure, mortality, recruitment and growth rates of Puya hamata rosettes, all Puya plants in 400 m2 plots were surveyed in 2008 and again one year later. Sixteen plots were recorded in both years, containing exactly 1000 plants. Mortality was very low during this period (0.6%). Only 27 new plants were recruited. Three different size distribution patterns were observed in the plots: (1) low plant numbers across all size ranges; (2) a single dominant peak in numbers at a particular size; (3) two dominant peaks in numbers at distinct sizes.
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Presence of Giant Hummingbird Patagona Gigas and Ecuadorian Hillstar Oreotrochilus Chimborazo Jamesoni at the Ecuador–Colombia Border
    Presence of Giant Hummingbird Patagona gigas and Ecuadorian Hillstar Oreotrochilus chimborazo jamesoni at the Ecuador–Colombia border Sam Woods, Fernando Ortiz-Crespo and Paul M. Ramsay Nuevos avistamientos de Patagona gigas y Oreotrochilus chimborazo jamesoni en la frontera entre Ecuador y Colombia confirman la extensión del límite distribucional norte de estos colibríes en Ecuador. P. gigas puede estar extendiéndose hacia el norte conforme las quemas de páramo proveen habitat apropiado para plantas de Puya, su principal fuente de néctar, mientras estas quemas podrían estar aumentando el aislamiento de O. chimborazo jamesoni al confinar su fuente de néctar, la planta Chuquiraga jussieui, a mayores altitudes. O. chimborazo jamesoni probablemente ha escapado detección en el pasado en los extremos de su distribución. Introduction The distribution of Andean birds continues to be a topic of interest, since vast mountain areas remain to be explored in detail and sight records by reliable observers have become increasingly important in lieu of specimens. The roughly linear north–south alignment of the Andes has created habitat corridors shaping bird distributions, where it is relatively easy to pinpoint latitudinal gaps and overlap areas. This report focuses on the range limits of two high Andean trochilids: Giant Hummingbird Patagona gigas and Ecuadorian or Chimborazo Hillstar Oreotrochilus chimborazo jamesoni—listed as O. estella chimborazo by some authors. Known ranges A distributional map based on museum specimens demonstrates that P. gigas ranges south along a narrow band from Hacienda Caspigasí at 00°01'N 78°29'W, c.110 km south-west of the Ecuador–Colombia border to Chile3. For O.
    [Show full text]