Winter/Spring 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ponytail Plant - ARID DOME
8/25/2009 Ponytail Plant - ARID DOME The ponytail plant grows in the Arid Dome. It is sometimes wrongly called the ponytail palm, but it is more closely related to agave or yucca than palm trees. These related plants are native to Mexico. They used to be in the same botanical family, but recent reclassification has separated them into different families. The scientific name is Beaucarnea recurvata. The common name ponytail plant comes from the thick mop of long, straplike leaves that are in a cluster at the top of the plant. The tree keeps its leaves and replaces them only when they are removed by a storm or other injury. This plant is something like a camel because it can survive for long dry periods using the water that is stored in its swollen trunk. The bark of the swollen base of the plant looks very much like the rough skin of an elephant, so another common name for this plant is “elephant foot.” Ponytail plants can grow to 6 feet in a container, but grow to 30 feet outdoors. They grow very slowly. This makes them good house plants because they do not need a lot of care and do not outgrow their pots for a long time. Seeds and plants are available at many commercial websites, such as gflora.com which provided the image accompanying this article. Mature plants produce many, small, creamy-white flowers on long panicles. You can sometimes see them in bloom at the Domes. They may flower two or three times a year. -
University of Florida Thesis Or Dissertation Formatting
SYSTEMATICS OF TRIBE TRICHOCEREEAE AND POPULATION GENETICS OF Haageocereus (CACTACEAE) By MÓNICA ARAKAKI MAKISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Mónica Arakaki Makishi 2 To my parents, Bunzo and Cristina, and to my sisters and brother. 3 ACKNOWLEDGMENTS I want to express my deepest appreciation to my advisors, Douglas Soltis and Pamela Soltis, for their consistent support, encouragement and generosity of time. I would also like to thank Norris Williams and Michael Miyamoto, members of my committee, for their guidance, good disposition and positive feedback. Special thanks go to Carlos Ostolaza and Fátima Cáceres, for sharing their knowledge on Peruvian Cactaceae, and for providing essential plant material, confirmation of identifications, and their detailed observations of cacti in the field. I am indebted to the many individuals that have directly or indirectly supported me during the fieldwork: Carlos Ostolaza, Fátima Cáceres, Asunción Cano, Blanca León, José Roque, María La Torre, Richard Aguilar, Nestor Cieza, Olivier Klopfenstein, Martha Vargas, Natalia Calderón, Freddy Peláez, Yammil Ramírez, Eric Rodríguez, Percy Sandoval, and Kenneth Young (Peru); Stephan Beck, Noemí Quispe, Lorena Rey, Rosa Meneses, Alejandro Apaza, Esther Valenzuela, Mónica Zeballos, Freddy Centeno, Alfredo Fuentes, and Ramiro Lopez (Bolivia); María E. Ramírez, Mélica Muñoz, and Raquel Pinto (Chile). I thank the curators and staff of the herbaria B, F, FLAS, LPB, MO, USM, U, TEX, UNSA and ZSS, who kindly loaned specimens or made information available through electronic means. Thanks to Carlos Ostolaza for providing seeds of Haageocereus tenuis, to Graham Charles for seeds of Blossfeldia sucrensis and Acanthocalycium spiniflorum, to Donald Henne for specimens of Haageocereus lanugispinus; and to Bernard Hauser and Kent Vliet for aid with microscopy. -
Effect of Media Type and BAP Concentrations on Micropropagation During Multiplication Stage on Ponytail Palm (Beaucarnea Recurvata Lem.) Abdel Kawy, Waly; Yehia M
Hortscience Journal of Suez Canal University, 2018 Effect of Media Type and BAP Concentrations on Micropropagation during Multiplication Stage on Ponytail Palm (Beaucarnea recurvata Lem.) Abdel Kawy, Waly; Yehia M. Abdel Fattah and Ali A. Shoman Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Received: 28/10/2018 Abstract: Ponytail palm (Beaucarnea recurvet Lem.; Family Asparagaceae) is one of the most important plants in the internal and external coordination. This work was carried out to study the effect of media type (MS, B5 and WPM) and Benzylaminopurine BAP at 0, 0.2, 0.4 and 0.6 mg/l during multiplication stage. The shoot tips were collected from in vitro seedlings cultured on MS medium without growth regulators. B5 medium supplemented with 0.4 mg/l (BAP) increased number of shoots (3.40 shoots/clump) and number of leaves (24) plant compared with other treatments. The B5 medium is preferable within mass production and featured commercial. The BAP Concentration 0.4 mg/l promotes shoots initiation and development with B5 medium more than MS and WPM. Keywords: Ponytail palm, Beaucarnea recurvata, tissue culture, micropropagation, BAP, media type, MS, B5, WPM INTRODUCTION MATERIALS AND METHODS Beaucarnea (Asparagaceae) is a Mexican and This study was carried out in the plant tissue Guatemalan genus that inhabits dry tropical areas. Most culture laboratory in the Department of Horticulture, of the species are endangered under the Mexican Faculty of Agriculture, Suez Canal University, Ismailia legislation because they have a high horticultural during the period 2013 – 2015. demand and are threatened by habitat destruction. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Taxonomía Y Filogenia De Trichocereus (Berg.) Riccob
UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO ―Taxonomía y filogenia de Trichocereus (Berg.) Riccob. (Trichocereeae- Cactaceae)‖ Tesis presentada para optar al grado de Doctor en Ciencias Naturales de la Universidad Nacional de La Plata Bióloga M. Sc. Adriana Sofía Albesiano Hoyos Director: Dr. Roberto Kiesling Co-Directora: Dra. Susana Freire La Plata, Argentina Agosto 3 de 2015 COMISIÓN ASESORA Dr. Roberto Kiesling, Instituto Argentino de Investigaciones de las Zonas Áridas-IADIZA, CONICET. Dra. Susana Freire, Instituto de Botánica Darwinion-San Isidro. Prof. Titular, Cátedra de Botánica Sistemática II, Facultad Ciencias Naturales y Museo, Universidad Nacional de La Plata. DEFENSA ORAL Y PÚBLICA Lugar y Fecha: Calificación: TRIBUNAL Firma:………………………………………………………...Aclaración………… Firma:………………………………………………………...Aclaración………… Firma:………………………………………………………...Aclaración………… TABLA DE CONTENIDO AGRADECIMIENTOS .............................................................................................................................. iii RESUMEN............................................................................................................................................... iv ABSTRACT ............................................................................................................................................ viii I. INTRODUCCIÓN ................................................................................................................................... 1 II. MATERIALES Y MÉTODOS ................................................................................................................ -
Taxonomic Revision of the Chilean Puya Species (Puyoideae
Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Author(s): Georg Zizka, Julio V. Schneider, Katharina Schulte and Patricio Novoa Source: Brittonia , 1 December 2013, Vol. 65, No. 4 (1 December 2013), pp. 387-407 Published by: Springer on behalf of the New York Botanical Garden Press Stable URL: https://www.jstor.org/stable/24692658 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Brittonia This content downloaded from 146.244.165.8 on Sun, 13 Dec 2020 04:26:58 UTC All use subject to https://about.jstor.org/terms Taxonomic revision of the Chilean Puya species (Puyoideae, Bromeliaceae), with special notes on the Puya alpestris-Puya berteroniana species complex Georg Zizka1'2, Julio V. Schneider1'2, Katharina Schulte3, and Patricio Novoa4 1 Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung and Johann Wolfgang Goethe-Universität, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; e-mail: [email protected]; e-mail: [email protected] 2 Biodiversity and Climate Research Center (BIK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany 3 Australian Tropical Herbarium and Tropical Biodiversity and Climate Change Centre, James Cook University, PO Box 6811, Caims, QLD 4870, Australia; e-mail: [email protected] 4 Jardin Botânico Nacional, Camino El Olivar 305, El Salto, Vina del Mar, Chile Abstract. -
Botanical Encounters Level 3 an INTERACTIVE & VIRTUAL TOUR
Botanical Encounters Level 3 AN INTERACTIVE & VIRTUAL TOUR Huntington Education Welcome to the Botanical Encounters Level 3 virtual tour! Each slide features a plant, tree, or flower with questions, activities, and links to additional information. Henry and Arabella Huntington loved to collect art, books, and plants. What do you like to collect? Video games? Posters? Sports memorabilia? In this interactive journey you’ll dive further into the Botanical collections. Let’s go exploring! Botanical Vocabulary Click on a vocabulary word to start your tour! Each word relates to something at The Huntington. Cryobiotechnology Ginger Orchid Passion Fruit Penjing Puya Once you have explored all six cards, click here! Pick Orchid Another The Rose Hills Foundation Conservatory for Botanical Science ● Orchids have been popular at The Huntington since Arabella Huntington’s day. She loved orchids and had quite a collection. Do you like orchids? ● In the wild, there are three ways orchids grow: on trees (epiphytes), on rocks (lithophytes), and on the ground (terrestrials). ● There are more than 25,000 species of orchids, making them the largest family in the plant kingdom. ● While all those orchid species might look different, there are two distinct characteristics they all share: they all have 3 petals and 3 sepals, and they have both male (stamen) and female (pistil) parts in one column. Activity Explore the online tour Orchids: Around the World on Six Continents. Find an orchid that catches your eye. Which orchid did you choose? Why did you pick that particular orchid? Where does it grow? Does it have any cultural or culinary significance? Click on these links to explore more Orchid Collection King of Orchids (From top): Masdevallia infracta ‘Huntington’s Angel’; Paphiopedilum Orchids Forever tigrinum ‘Huntington’s Crouching Tiger’; Trichopilia suavis. -
Departamento De Botánica Facultad De Ciencias Naturales Y Oceanográficas Universidad De Concepción VALOR ADAPTATIVO DE LA VÍ
Departamento de Botánica Facultad de Ciencias Naturales y Oceanográficas Universidad de Concepción VALOR ADAPTATIVO DE LA VÍA FOTOSINTÉTICA CAM PARA ESPECIES CHILENAS DEL GÉNERO PUYA (BROMELIACEAE) Tesis para optar al grado de Doctor en Ciencias Biológicas, Área de especialización Botánica IVÁN MARCELO QUEZADA ARRIAGADA Profesor guía: Dr. Ernesto Gianoli M. Profesor co-tutor: Dr. Alfredo Saldaña M. Comisión evaluadora de tesis, para optar al grado de Doctor en Ciencias Biológicas Área Botánica “Valor adaptativo de la vía fotosintética CAM para especies chilenas del género Puya (Bromeliaceae)” Dr. Ernesto Gianoli ___________________________________ Profesor Guía Dr. Alfredo Saldaña ___________________________________ Co-tutor Dr. Carlos M. Baeza ___________________________________ Dra. María Fernanda Pérez ___________________________________ Evaluadora externa Dra. Fabiola Cruces ___________________________________ Directora (S) Programa Doctorado en Botánica Septiembre 2013 1 A Paula, Leonor y Julieta 2 AGRADECIMIENTOS El completar exitosamente una tarea de esta magnitud se debe, en gran medida, a todos quienes me brindaron su apoyo, consejo o ayuda en algún punto de este largo camino. En primer lugar debo agradecer a Paula, mi esposa, amiga y compañera, por soportar conmigo estos 4 años y medio de esfuerzo, sacrificios y más de alguna recompensa. No solo ha sido soporte para mi espíritu durante todo este tiempo, sino que además fue la mejor compañera de terreno que pude haber encontrado. Agradezco también a mi hija mayor, Leonor, inspirada dibujante, talentosa fotógrafa y la mejor asistente de muestreo que existe, cuya mirada de felicidad y asombro durante los largos viajes en los que me acompañó fue el mejor recordatorio de que la vida hay que disfrutarla, siempre. También, y aunque llegó al final de este largo camino, agradezco a Julieta, quien ha sido el impulso que necesitaba para darme a la tarea de concluír este trabajo. -
Puya Hamata Demography As an Indicator of Recent Fire
http://www.icn.unal.edu.co/ García-MenesesCaldasia 36(1):53-69. & Ramsay 2014 PUYA HAMATA DEMOGRAPHY AS AN INDICATOR OF RECENT FIRE HISTORY IN THE PÁRAMO OF EL ÁNGEL AND VOLCÁN CHILES, ECUADOR-COLOMBIA La demografía de Puya hamata como indicador de la historia de fuegos recientes en el páramo de El Ángel y Volcán Chiles, Ecuador-Colombia PAOLA M. GARCÍA-MENESES School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom. [email protected]: Corresponding author PAUL M. RAMSAY Marine Biology and Ecology Research Centre, Plymouth University, Plymouth, PL4 8AA, United Kingdom. [email protected] ABSTRACT High-altitude páramo grasslands are important for their biodiversity and the ecosystem services that they provide to Andean people, but they are sensitive to disturbances, such as fire. Understanding the ecological impacts of disturbance is critical for the effective management of páramos. Indicator species studies can provide a relatively efficient way to gain such understanding.Puya hamata is a flagship giant rosette plant and has potential as an indicator of recent páramo fire history. To determine population size structure, mortality, recruitment and growth rates of Puya hamata rosettes, all Puya plants in 400 m2 plots were surveyed in 2008 and again one year later. Sixteen plots were recorded in both years, containing exactly 1000 plants. Mortality was very low during this period (0.6%). Only 27 new plants were recruited. Three different size distribution patterns were observed in the plots: (1) low plant numbers across all size ranges; (2) a single dominant peak in numbers at a particular size; (3) two dominant peaks in numbers at distinct sizes. -
List of Approved Plants
APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
Presence of Giant Hummingbird Patagona Gigas and Ecuadorian Hillstar Oreotrochilus Chimborazo Jamesoni at the Ecuador–Colombia Border
Presence of Giant Hummingbird Patagona gigas and Ecuadorian Hillstar Oreotrochilus chimborazo jamesoni at the Ecuador–Colombia border Sam Woods, Fernando Ortiz-Crespo and Paul M. Ramsay Nuevos avistamientos de Patagona gigas y Oreotrochilus chimborazo jamesoni en la frontera entre Ecuador y Colombia confirman la extensión del límite distribucional norte de estos colibríes en Ecuador. P. gigas puede estar extendiéndose hacia el norte conforme las quemas de páramo proveen habitat apropiado para plantas de Puya, su principal fuente de néctar, mientras estas quemas podrían estar aumentando el aislamiento de O. chimborazo jamesoni al confinar su fuente de néctar, la planta Chuquiraga jussieui, a mayores altitudes. O. chimborazo jamesoni probablemente ha escapado detección en el pasado en los extremos de su distribución. Introduction The distribution of Andean birds continues to be a topic of interest, since vast mountain areas remain to be explored in detail and sight records by reliable observers have become increasingly important in lieu of specimens. The roughly linear north–south alignment of the Andes has created habitat corridors shaping bird distributions, where it is relatively easy to pinpoint latitudinal gaps and overlap areas. This report focuses on the range limits of two high Andean trochilids: Giant Hummingbird Patagona gigas and Ecuadorian or Chimborazo Hillstar Oreotrochilus chimborazo jamesoni—listed as O. estella chimborazo by some authors. Known ranges A distributional map based on museum specimens demonstrates that P. gigas ranges south along a narrow band from Hacienda Caspigasí at 00°01'N 78°29'W, c.110 km south-west of the Ecuador–Colombia border to Chile3. For O.