Observational Paradoxes in Extragalactic Astronomy J

Total Page:16

File Type:pdf, Size:1020Kb

Observational Paradoxes in Extragalactic Astronomy J Observational Paradoxes in Extragalactic Astronomy J. Schneider, Meudon Chargé de Recherches at the CNRS, working in ABCDE the Groupe d’Astrophysique Relativiste, at the Meudon Observatory, Meudon. France. where λ is the value of the wavelength in the Chain VV 172 (Fig. 1) the ga­ of spectral lines at the emission and λ’ laxy B has a redshift of 30 000 km/s is their value at the observer ; H is the whereas the four other galaxies have present day value of the Hubble redshifts of 15 000 km/s ; in the Sey- constant, D is the present distance fert Sextet one galaxy has a redshift and c is the velocity of light. The pro­ of 20 000km/s whereas the five other duct zc is the symbolic recession redshifts are 4 500 km/s ; in Stephan's velocity, designated often shortly as Quintet (Fig. 2) the galaxy A has a redshift. redshift of 800 km/s whereas the Here it is important to realize that others have redshifts of 6 000 km/s. measuring the distance is very diffi­ How can such large differences be cult. For a quasar (QSO) no distance explained by conventional cosmology measurement has so far been pos­ as summarized in eq. (1) ? Certainly Fig. 1 Chain VV172 of five galaxies. sible. It is assumed however that the not by orbital motions of the objects above relation holds for these objects. around each other since the escape To understand astrophysical pheno­ velocities are of the order of 500 km/s. Certain extragalactic observations, mena the following basic working hy­ By the term HD/c ? But then one must because of their paradoxical aspects pothesis is made, i.e. the present conclude that these galaxies are so constitute a great mystery to astrono­ laws of microscopic physics are the close together in the sky as a result mers. These observations, which still same in a celestical body as those we of chance only. From the density of need confirmation, do not fit the cur­ know today on the Earth. One can call galaxies in the sky, one estimates rent picture of the Universe. In parti­ this the Fundamental Hypothesis of the probality to be very small that cular, the puzzle due to the observed Astrophysics. three coincidences occur. redshifts of some galaxies and qua­ With this the whole Universe is sars for which at present there is no described and one could in principle Astronomers became aware of these explanation will be considered here. stop here. In fact, it is at this point curiosities at about the same time as Today’s conventional cosmology that things start. the discovery of QSO’s. At that time rests on the empirically derived ex­ For several years it has been the cosmological origin of the redshift pansion law of Hubble which gives for known that a few groups of gala­ of quasars was questioned. A few the redshift of galaxies and quasars xies present the curious property that astronomers assumed that there might the redshift of one galaxy differs exist a different origin to the redshift z = λ’/λ — 1 = HD/c (1), greatly from that of the others : than the Doppler effect and the cosmic expansion. To check whether different galaxies were at the same distance and thus that their cosmological red­ shifts where the same, H. Arp studied galaxies connected by luminous fila­ ments. He found that even two objects connected by a bridge could have very discrepant redshifts. In Fig. 3, where the connection is well esta­ blished, the large galaxy has a red­ shift of 8 000 km/s and the compact companion a redshift of 19 000 km/s. There exist five other possible con­ nections between galaxies and com­ pact objects (see table I). The largest difference is found for the pair NGC 4319/M205 (Fig. 4) where the galaxy has a redshift of 2 000 km/s whereas the compact object (a QSO or a N- type galaxy) has a redshift of 20 000 km/s. However these latter con­ nections are not definitively confirmed Fig. 2 Stephan’s Quintet. and a large part of the controversy * Seminar given at CERN, Geneva on 12 February 1974. concerns their existence. 6 The DEPARTMENT of PHYSICS AND ASTRONOMY of the STATE UNI­ VERSITY of LEIDEN invites applicants for a position of Lector in the Physics of Metals The position, which has tenure, is comparable to that of an associate professor. • Applicants should have a good understanding of the physics of metals and a wide experience of research in solid state physics. • The task of the lector will be to lead a research team working on prob­ lems in metal physics in the Kamerlingh Onnes Laboratory. This work comprises, at present, thermal and transport properties of alloys, opti­ cal absorption, physical metallurgy etc. and is financially supported by the Foundation F.O.M. (Fundamental Research of Matter). • Knowledge of the Dutch language is not essential. • Salary ranges, with annual increases, from about 53,000 to 76,000 Dutch guilders. • Applications, with list of publications, curriculum vitae, and the names of at least two references should be sent to the chairman of the ap­ pointment committee Prof. W.J. Huiskamp, Kamerlingh Onnes Labo­ ratory, Nieuwsteeg 18, Leiden, Holland. Information can be obtained from Dr. G.J. van den Berg, Kamerlingh Onnes Laboratory. Fig. 3 Galaxy NGC 7603 (redshift 8 000 km/s) connected by a bridge of luminous matter to a compact companion at the bottom (redshift the Hubble distance deduced from to find something new to explain 19 000 km/s). Hubble law. Surprisingly however the redshift. Some astronomers, like Arp, distance of galaxy B turned out to be have proposed to give up the Funda­ For NGC 4319/M205 Arp obtained about the same than that of galaxy A, mental Hypothesis and envisaged that six photographs with a visible con­ disagreeing thus completely with the new physical laws applied in celesti- nection but other observers did not Hubble distance since the redshift of ca'I bodies. succeed in seeing the bridges. When that galaxy is 8 times larger. On the Theoreticians also have speculated two objects with different redshifts are other hand a group of radioastrono­ about new theories to explain these connected one can ask whether it is mers from the Meudon Observatory observations. One line of sought due the high redshift object or the low made a distance determination based to Hoyle and Narliker assumes that redshift one which does not satisfy on a different method, i.e. on a statis­ the electron rest mass is not an abso- the Hubble relation (1). What is remar­ tical and empirai correlation between kable is that whenever it was possible the absolute luminosity L and content to make a decision it was the high M in neutral hydrogen of a galaxy of redshift object that did not follow the given type. Here again the distance of law. the galaxy A measured in this way was Let us now return to the Stephan's in agreement with the Hubble distance; Quintet which I mentioned at the be­ and here again the distance of a high ginning. Here it was possible to go redshift member of the group, ga­ one step further since the distance laxy C, turned out to be in complete of the galaxies has been determined. disagreement with the Hubble law.* First Arp has determined the distri­ Moreover the discrepant shift which bution of the angular size of the H was at first sight the low redshift II regions of galaxies A and B (Fig. 2). in the Quintet turned out to be in fact H regions are large spheroidal sour- the high redshift ; thus the hypothesis n that anomalous shifts were towards ces of ionized hydrogen and their the red was strongly confirmed. Since angular diameter gives a distance the extra redshift can not be absorbed indication. The distance of galaxy A by any orbiting or ejection velocity measured in this way agreed with nor by a gravitational origin, one has TABLE I Galaxy zc Connected object zc N 7603 8 000 km/s anonymous 19 000 km/s N 7320 800 N 7320 C 6 000 N 4151 900 N 4156 6 000 IC 3483 100 IC 3483 7 000 N 4319 2 000 M 205 20 000 Fig. 4 Galaxy NGC 4319 connected by a lumi- nous bridge to quasar M 205 whose redshift is Anonymous < 100 000 ? PHL 1226 120 000 ten times larger. The real existence of the * See note on page 8. bridge is still controversed. 7 lute constant but changes from place 24 - 30 July to place in the Universe. Such a 9th International Conference on the Physics of Meetings Electronic and Atomic Collisions (ICPEAC) change would shift the energy levels Seattle, Wash., USA of atoms and thus the transition fre­ R. Geballe, Department of Physics, University of quencies. This assumption however For a full list of events see the latest Washington, Seattle, Wash. 98195 does not explain why the shift is sys­ Meetings Issue of Europhysics News 5, 5 (May 1974). Notification of the meet­ 18 - 21 August tematically towards the red. Another 3rd International Conference on Vapour Growth attempt was made by J.-C. Pecker, ings announced in this issue has been and Epitaxy J.-P. Vigier et al. from Paris : they received recently. Amsterdam, The Netherlands The order of information is: date, C.J.M. Rooymans, Philips Research Laboratories, assume a new type of inelastic inter­ Bldg. WA, Eindhoven action between the photon and a new title, venue, and contact for Inform­ massive boson.
Recommended publications
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Download This Article in PDF Format
    A&A 625, A36 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935130 & c ESO 2019 Astrophysics Varied origins of up-bending breaks in galaxy disks? Aaron E. Watkins1, Jarkko Laine2, Sébastien Comerón1, Joachim Janz1,3, and Heikki Salo1 1 Astronomy Research Unit, University of Oulu, 90014 Oulu, Finland e-mail: [email protected] 2 Hamburg Sternwarte, Universität Hamburg, 21029 Hamburg, Germany 3 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland Received 25 January 2019 / Accepted 20 March 2019 ABSTRACT Aims. Using a sample of 175 low-inclination galaxies from the S4G, we investigate the origins of up-bending (Type III) breaks in the 3.6 µm surface brightness profiles of disk galaxies. Methods. We reanalyzed a sample of previously identified Type III disk break-hosting galaxies using a new, unbiased break-finding algorithm, which uncovered many new, sometimes subtle disk breaks across the whole sample. We classified each break by its likely origin through close examination of the galaxy images across wavelengths, and compare samples of galaxies separated by their outermost identified break types in terms of their stellar populations and local environments. Results. We find that more than half of the confirmed Type III breaks in our sample can be attributed to morphological asymmetry in the host galaxies. As these breaks are mostly an artifact of the azimuthal averaging process, their status as physical breaks is questionable. Such galaxies occupy some of the highest density environments in our sample, implying that much of this asymmetry is the result of tidal disturbance.
    [Show full text]
  • Interstellar Mg II and C IV Absorption by L| Galaxies Along the Sightline to Mrk 205 N ~U.,1U V
    Interstellar Mg II and C IV absorption by l| galaxies along the sightline to Mrk 205 N ~U.,1U V . ^,,^ », „. V,XIX,0 ~,C^O (Space Telescope Science Institute) We present the first results of our HST survey designed to search for Mg II and C IV absorption lines from the disks and haloes of low-redshift galaxies, using background QSOs and supernovae as probes. Our survey utilizes the high resolution of the Goddard High Resolution Spectrograph enabling us to calculate the column densities and doppler parameters of individual components within an absorption complex, and hence determine the physical conditions of the absorbing gas. Observing the complexity of the absorption line profiles i.e., the velocity distribution and total velocity extent of the constituent components, offers an important description of the kinematics of the absorbing gas, and hence an understanding of its origin. We focus on one sightline in particular, that towards Mrk 205, which passes 3 — 5 kpc from the intervening galaxy NGC 4319. We detect Mg II and C IV absorption from both local Milky Way halo gas and from NGC 4319 (Fig. 1). The equivalent width (W) of the local C IV(A1548) line is weak, V7(A1548) = 159±29 mA, but very similar to the extragalactic absorption, VF(A1548) = 187 ± 32 mA. However, the disparity between the local Mg II absorption and that in NGC 4319 is severe: the lines arising in the Milky way gas are saturated [jy(A2796) = 1.08 ± 0.02 A], are composed of several components (> 5) covering a total velocity span of 100 km s"1, and are flanked by weak high- velocity components at —215, —153.
    [Show full text]
  • The Virgo Supercluster
    12-1 How Far Away Is It – The Virgo Supercluster The Virgo Supercluster {Abstract – In this segment of our “How far away is it” video book, we cover our local supercluster, the Virgo Supercluster. We begin with a description of the size, content and structure of the supercluster, including the formation of galaxy clusters and galaxy clouds. We then take a look at some of the galaxies in the Virgo Supercluster including: NGC 4314 with its ring in the core, NGC 5866, Zwicky 18, the beautiful NGC 2841, NGC 3079 with is central gaseous bubble, M100, M77 with its central supermassive black hole, NGC 3949, NGC 3310, NGC 4013, the unusual NGC 4522, NGC 4710 with its "X"-shaped bulge, and NGC 4414. At this point, we have enough distant galaxies to formulate Hubble’s Law and calculate Hubble’s Red Shift constant. From a distance ladder point of view, once we have the Hubble constant, and we can measure red shift, we can calculate distance. So we add Red Shift to our ladder. Then we continue with galaxy gazing with: NGC 1427A, NGC 3982, NGC 1300, NGC 5584, the dusty NGC 1316, NGC 4639, NGC 4319, NGC 3021 with is large number of Cepheid variables, NGC 3370, NGC 1309, and 7049. We end with a review of the distance ladder now that Red Shift has been added.} Introduction [Music: Antonio Vivaldi – “The Four Seasons – Winter” – Vivaldi composed "The Four Seasons" in 1723. "Winter" is peppered with silvery pizzicato notes from the high strings, calling to mind icy rain. The ending line for the accompanying sonnet reads "this is winter, which nonetheless brings its own delights." The galaxies of the Virgo Supercluster will also bring us their own visual and intellectual delight.] Superclusters are among the largest structures in the known Universe.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Oregon Star Party Advanced Observing List
    Welcome to the OSP Advanced Observing List In a sincere attempt to lure more of you into trying the Advanced List, each object has a page telling you what it is, why it’s interesting to observe, and the minimum size telescope you might need to see it. I’ve included coordinates, the constellation each object is located in, and either a chart or photo (or both) showing what the object looks like and how it’s situated in the sky. All you have to do is observe and enjoy the challenge. Stretch your skill and imagination - see something new, something unimaginably old, something unexpected Even though this is a challenging list, you don’t need 20 years of observing experience or a 20 inch telescope to be successful – although in some cases that will help. The only way to see these cool objects for yourself is to give them a go. Howard Banich, The minimum aperture listed for each object is a rough estimate. The idea is to Chuck Dethloff and show approximately what size telescope might be needed to successfully observe Matt Vartanian that particular object. The range is 3 to 28 inches. collaborated on this The visibility of each object assumes decently good OSP observing conditions. year’s list. Requirements to receive a certificate 1. There are 14 objects to choose from. Descriptive notes and/or sketches that clearly show you observed 10 objects are needed to receive the observing certificate. For instance, you can mark up these photos and charts with lines and arrows, and add a few notes describing what you saw.
    [Show full text]
  • Dynamics of Barred Galaxies
    Reports on Progress in Physics 56 (1993) 173-255 Dynamics of Barred Galaxies J A Sellwood1,2 and A Wilkinson3 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics and Astronomy, Rutgers University, PO Box 849, Piscataway, NJ 08855-0849, USA 3Department of Astronomy, The University, Manchester M13 9PL, England Abstract Some 30% of disc galaxies have a pronounced central bar feature in the disc plane and many more have weaker features of a similar kind. Kinematic data indicate that the bar constitutes a major non-axisymmetric component of the mass distribution and that the bar pattern tumbles rapidly about the axis normal to the disc plane. The observed motions are consistent with material within the bar streaming along highly elongated orbits aligned with the rotating major axis. A barred galaxy may also contain a spheroidal bulge at its centre, spirals in the outer disc and, less commonly, other features such as a ring or lens. Mild asymmetries in both the light and kinematics are quite common. We review the main problems presented by these complicated dynamical systems and sum- marize the effort so far made towards their solution, emphasizing results which appear secure. Bars are probably formed through a global dynamical instability of a rotationally supported galactic disc. Studies of the orbital structure seem to indicate that most stars in the bar follow regular orbits but that a small fraction may be stochastic. Theoretical work on the three-dimensional structure of bars is in its infancy, but first results suggest that bars should be thicker in the third dimension than the disc from which they formed.
    [Show full text]
  • TABLE 1 Explanation of CVRHS Symbols A
    TABLE 1 Explanation of CVRHS Symbols a Symbol Description 1 2 General Terms ETG An early-type galaxy, collectively referring to a galaxy in the range of types E to Sa ITG An intermediate-type galaxy, taken to be in the range Sab to Sbc LTG A late-type galaxy, collectively referring to a galaxy in the range of types Sc to Im ETS An early-type spiral, taken to be in the range S0/a to Sa ITS An intermediate-type spiral, taken to be in the range Sab to Sbc LTS A late-type spiral, taken to be in the range Sc to Scd XLTS An extreme late-type spiral, taken to be in the range Sd to Sm classical bulge A galaxy bulge that likely formed from early mergers of smaller galaxies (Kormendy & Kennicutt 2004; Athanassoula 2005) pseudobulge A galaxy bulge made of disk material that has secularly collected into the central regions of a barred galaxy (Kormendy 2012) PDG A pure disk galaxy, a galaxy lacking a classical bulge and often also lacking a pseudobulge Stage stage The characteristic of galaxy morphology that recognizes development of structure, the widespread distribution of star formation, and the relative importance of a bulge component along a sequence that correlates well with basic characteristics such as integrated color, average surface brightness, and HI mass-to-blue luminosity ratio Elliptical Galaxies E galaxy A galaxy having a smoothly declining brightness distribution with little or no evidence of a disk component and no inflections (such as lenses) in the luminosity distribution (examples: NGC 1052, 3193, 4472) En An elliptical galaxy
    [Show full text]
  • A Classical Morphological Analysis of Galaxies in the Spitzer Survey Of
    Accepted for publication in the Astrophysical Journal Supplement Series A Preprint typeset using LTEX style emulateapj v. 03/07/07 A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) Ronald J. Buta1, Kartik Sheth2, E. Athanassoula3, A. Bosma3, Johan H. Knapen4,5, Eija Laurikainen6,7, Heikki Salo6, Debra Elmegreen8, Luis C. Ho9,10,11, Dennis Zaritsky12, Helene Courtois13,14, Joannah L. Hinz12, Juan-Carlos Munoz-Mateos˜ 2,15, Taehyun Kim2,15,16, Michael W. Regan17, Dimitri A. Gadotti15, Armando Gil de Paz18, Jarkko Laine6, Kar´ın Menendez-Delmestre´ 19, Sebastien´ Comeron´ 6,7, Santiago Erroz Ferrer4,5, Mark Seibert20, Trisha Mizusawa2,21, Benne Holwerda22, Barry F. Madore20 Accepted for publication in the Astrophysical Journal Supplement Series ABSTRACT The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im.
    [Show full text]
  • DEEP-SKY CHALLENGE OBJECTS by Alan Dyer a Nd Alister Ling the Beauty of the Deep Sky Extends Well Past the Best and Brightest Objects
    322 Challenge Objects DEEP-SKY CHALLENGE OBJECTS BY ALAN DYER A ND ALISTER LING The beauty of the deep sky extends well past the best and brightest objects. The attraction of observing is not the sight of an object itself but our intellectual contact with what it is. A faint, stellar point in Virgo evokes wonder when you try to fathom the depths of this quasar billions of light-years away. The eclectic collection of objects below is designed to introduce some “fringe” catalogs while providing challenging targets for a wide range of apertures. Often more important than sheer aperture are factors such as the quality of sky, quality of the optics, use of an appropriate filter, and the observer’s experience. Don’t be afraid to tackle some of these with a smaller telescope. Objects are listed in order of right ascension. Abbreviations are the same as in THE MESSIER CATALOGUE and THE FINEST NGC OBJECTS, with the addition of DN = dark nebula and Q = quasar. Chart # indicates the chart in which the object can be found in Uranometria 2000.0 Deep Sky Atlas (2nd Ed., 2001). The last column suggests the minimum aperture, in millimetres, needed to see that object. Most data are taken from Sky Catalogue 2000.0, Vol. 2. Some visual magnitudes are from other sources. RA (2000) Dec Size Minimum Aperture # Object Con Type h m ° ′ mv ′ Chart # mm 1 NGC 7822 Cep E/RN 0 03.6 +68 37 — 60 × 30 8 300 large, faint emission nebula; rated “eeF”; also look for E/R nebula Ced 214 (associated w/ star cluster Berkeley 59) 1° S 2 IC 59 Cas E/RN 0 56.7 +61 04 — 10 × 5
    [Show full text]
  • Appendix Appendix
    Appendix Appendix Abbreviations Here general abbreviations, as used in the text, are explained. Excluded: galaxy classifica- tion (Table 1.2), catalog designations and names (Chapter 3), publications (see next Appendices), or directions (e.g., NW). AGN Active galactic nucleus BCD Blue compact dwarf (galaxy) BSO Blue stellar object CCD Charge coupled device CDM Cold dark matter DSS Digital Sky Survey fst Faintest star GA Great attractor GC Globular cluster GRB Gamma ray burst HII HII region HDF Hubble Deep Field HST Hubble Space Telescope LBV Luminous blue variable LF Luminosity function LG Local Group LPR Light pollution reduction (filter) LSB Low surface brightness (galaxy) OC Open cluster PN Planetary nebula POSS Palomar Observatory Sky Survey QSO Quasi stellar object (quasar) SC Star cloud SCT Schmidt-Cassegrain telescope SDSS Sloan Digital Sky Survey SSC Super star cluster UHC Ultra high contrast (filter) ULIRG Ultra luminous infrared galaxy WR Wolf-Rayet (galaxy) ZOA Zone of avoidance 230 General Literature Books on Galaxies and Related Subjects Appendix Binney, J., Merrifield, M., Galactic Astronomy, Princeton University Press, Princeton, NJ, 1998 Bok, B. J., Bok, P. F., The Milky Way, Harvard University Press, Cambridge, MA, 1981 Combes, F., Boisse, P., Mazure, A., Blanchard, A., Galaxies and Cosmology, Springer- Verlag, Heidelberg, 2002 Elmegreen, D. M., Galaxies and Galactic Structure, Prentice-Hall Inc., Upper Saddle River, NJ, 1998 Ferris, T., Galaxies, Stewart, Tabori & Chang Publ., New York, NY, 1982 Hodge, P. W., Galaxies, Harvard University Press, Cambridge, MA, 1986 Hubble, E. P., Realm of the Nebulae, Dover Publ., Mineola, NY, 1958 Jones, M., Lambourne, R. (eds), An Introduction to Galaxies and Cosmology, Cambridge University Press, Cambridge, 2004 Keel, C.
    [Show full text]