The Keap1–Nrf2 Pathway in Toxicology—Curtis Klaassen
Total Page:16
File Type:pdf, Size:1020Kb
The Keap1‐Nrf2 Pathway in Toxicology Curtis Klaassen University of Kansas Medical Center Cd tolerance from Cd pretreatment Time after Cd pretreatment n Mortality (%) No pretreatment 10 100 2 hr 10 100 4 hr 10 100 6 hr 10 60 8 hr 10 50 24 hr 10 0 2 day 10 0 4 day 10 0 8 day 10 0 16 day 10 0 Rats were pretreated with CdCl2 (2.0 mg Cd/kg, sc) and at indicated time challenged with a lethal dose of CdCl2 (4.0 mg/kg, iv), and mortality was recorded within 48 hrs after Cd challenge. Goering and Klaassen JTEH 14:803, 1984 Cd pretreatment protected against acute Cd hepatotoxicity No pretreatment 1000000 Cd pretttreatmen t 100000 ml) // units 10000 (S DH * * * S 1000 100 Control 2.0 3.0 4.0 5.0 mg Cd/kg Rats were pretreated with CdCl2 ((gg,2.0 mg Cd/kg, sc) and 24 hrs later were challenged with hepatotoxic doses of CdCl2 (2.0-4.0 mg/kg, iv), and serum SDH was determined 10 hrs later. Data are Mean ± SE of 4-6 rats. Goering and Klaassen TAAP 74:308, 1984 Cd pretreatment alters subcellular Cd distribution 80 No pretreatment 70 * Cd pretreatment liver 60 the nn i 50 40 30 stribution ii d 20 * Cd * * % 10 0 Nuclei Mitochondria Microsome Cytosol Rats were pretreated with CdCl2 (2.0 mg Cd/kg, sc) and 24 hrs later were challenged with hepatotoxic doses of CdCl2 (3.5 mg Cd/kg, iv), and subcellular Cd dis tr ibu tion was de term ine d 2 hrs ltlater. D Dtata are Mean ± SE o f 6 ra ts. Goering and Klaassen TAAP 70:195, 1983 Cd pretreatment alters cytosolic Cd distribution No pretreatment 353.5 Cd pretreatment 3 2.5 er vv li 2 Cd/g 1.5 ug 1 0.5 0 0.6 1.0 1.4 1.8 2.2 2.6 Ve/Vo Rats were pretreated with CdCl2 (2.0 mg Cd/kg, sc) and 24 hrs later were challenged with hepatotoxic doses of CdCl2 (3.5 mg Cd/kg, iv), and cytosolic Cd dis tr ibu tion was de term ine d 2 hrs ltlater. Goering and Klaassen TAAP 70:195, 1983 MT-null mice are highly susceptible to chronic Cd-induced nephrotoxicity Wild-type control and MT-null mice were given CdCl2 (0.05-2.4 mg/kg, sc) daily for 6 weeks, and Blood urea nitrogen (BUN) and renal MT were determined. N =6-8 mice. Liu……Klaassen ToxSci 46: 197, 1998 The relationship between human exposure to cadmium and renal injjyury Klaassen et al., Ann Rev Pharmacol Tixocol 39, 267, 1999 • In 1987, a post‐doctoral fellow, Jie Liu, came to my Lab with a “suitcase” of chemicals in Traditional Chinese Medicine that he thought would protect against liver injury. OA Oleanolic acid UA Ursolic acid UV Uvaol α‐H α‐Hederin HD Hederagenin GL Glycyrrhizin Jie Liu 87‐98 18β‐GA 18 β‐Glycyrrhetinic acid 18 α‐GA 18 α‐Glycyrrhetinic acid HAG 19 α‐Hydroxyl asiatic acid 29‐ 0‐β‐glucoside HA 19 α‐Hydroxyl asiatic acid 3000 CCl4 2500 2000 ∗ 1500 ∗ ALT (U/L) ALT 1000 ∗ ∗ ∗ 500 ∗ 0 25000 20000 15000 ∗ ∗ 10000 SDH (U/ ml) ∗ ∗ 5000 ∗ 0 2.0 de) aa ∗ ∗ 1.5 ∗ ∗ 1.0 NECROSIS (gr NECROSIS 0.5 0.0 CON Jgs Ngs Ful OA Swe Om DDB 40 30 (%) y 20 Mortalit 10 0 10000 Vehicle Saline Bromobenzene OA 8000 Acetaminophen 6000 ALT (U/L) Carbon tet 4000 Thioacetamide Furosemide 2000 Phalloidin 0 Colchicine 25000 Cadmium Saline ∗ D-GalN/LPS 20000 Bromobenzene U/L) ∗ Acetaminophen 15000 ∗ ∗ Carbon tet ∗ SDH (kI 10000 Thioacetamide Furosemide 5000 ∗ Phalloidin ∗ ∗ 0 Colchicine ∗ ∗ Cadmium Saline ∗ D-GalN/LPS 3 Bromobenzene ∗ Acetaminophen ∗ ∗ 2 Carbon tet Thioacetamide ∗ Necrosis (grade) 1 Furosemide ∗ ∗ Phalloidin ∗ 0 Colchicine ∗ ∗ ∗ ∗ Cadmium ∗ Saline D-GalN/LPS Bromobenzene ∗ Acetaminophen Carbon tet ∗ ∗ Thioacetamide Furosemide ∗ ∗ Phalloidin Colchicine Cadmium D-GalN/LPS Oleanolic acid How? We spent a considerable amount of time tying to determine how Oleanolic Acid protects against this large panel of hepatotoxicants, unfortunately, with little success. Precarcinogens activation Anticarcinogenic enzyme inducers are of two types: (a) bifunctional inducers (e. g., TCDD, polycyclic aromatics) that elevate both Phase II enzymes, NAD(P)H: quinone oxidddoreductase, and certain Phase I enzymes; (b) monofunctional inducers ((g,e.g., diphenols, thiocarbamates, 1,2‐dithiol‐3‐ thiones, beta‐ naphthoflavone) that elevate priilimarily Phase II enzymes. Cancer prevention Prochaska and Talalay Cancer Res 1988 Phenolic antioxidants Pheno licantiox idan ts Nrf2 Maf GST‐Ya GST‐Ya ARE ARE GST‐Pi Nqo1 Antioxidants Itoh et al., BBRC 1997. Nrf2 Maf Ho‐1 (Alam et al., JBC 1999) ARE Gclc (Moinova et al., BBRC 1999) Oxidative stress and activators CUL3 Keap1 Keap1 Nrf2 Nrf2 Anti‐oxidant and inflammation Nrf2 Cell survival and proliferation Maf Drug metabolism Lipid metabolism ARE Keap1 cysteine Nrf2 activator Structure residues Reference (Dinkova‐ dexamethasone 21‐ 257, 273, 288, 297, Kostova et al., mesylate and 613 (human) 2002) 196, 226, 241, 257, iodoacetyl‐N‐ (Hong et al., 288, and 319 biotinylhexylenediamine 2005b) (mouse) 77, 226, 249, 257, (Hong et al., sulforaphane 489, 513, 518 2005) (human) 151, 319, and 613 (Luo et al., xanthohumol (human) 2007) Michael Sporn, “the father of chemoprevention” asked for our Oleanolic Acid so he could make more potent analogues. Oleanolic acid CDDO CDDO‐Me CDDO‐Im 2‐cyano‐3,12‐dioxooleana‐1,9(11)‐dien‐28‐oic acid (CDDO) CDDO compounds are potent Nrf2 activators 140000 3500 WT-Vehicle 120000 WT-CDDO-Im ∗ 3000 * Nrf2-null Vehicle Nrf2-null-CDDO-Im 2500 100000 * 2000 80000 ALT (IU/L) l liver RNA l liver 1500 aa ∗ mm 1000 g tot 60000 ∗ μ Seru 500 40000 * RLUs/2 0 Nrf2 WT WT null null 20000 CDDO-Im - + - + 0 Acetaminophen + +++ Nqo1 Gclc Ho-1 A single dose of CDDO‐Im (1mg/kg, i.p.) CDDO‐Im protection against increases Nrf2‐dependent genes in wild‐ acetaminophen hepatotoxicity is type but not Nrf2‐null mice Nrf2‐dependent Reisman and Klaassen. Toxi Appl Pharm. 2009. Oleanolic acid is also a Nrf2 activator 18 Nf2Nrf2 N1Nqo1 GlGclc H1Ho-1 8 16 7 * 14 * 6 * -actin ontrol) β 12 ression ontrol 5 ein oo tt CC CC pp 4 10 3 Nrf2 Pro 8 * Relative to to Relative 2 Normalized t 1 6 ND ND r mRNA Ex rmalized to * 0 ee Wild-type Nrf2-null oo 4 (N Oleanolic Acid - + - + Liv 2 0 WT null WT null WT null WT null Oleanolic Acid - + - + - + - + - + - + - + - + A single dose of oleanolic acid (30mg/kg, i.p.) increases Nrf2 translocation into nucleus and induce Nrf2 target genes in wild‐type but not Nrf2‐null mice What Pathways Might the Keap1‐Nrf2 Pathway Alter? Generation Nrf2 ‐null Wild ‐type of Keap1 “Gene ‐KD Keap1 dose ‐HKO ‐response” 1.2 1.0 0.8 pression x Nrf2 0.6 ‐null 0.4 Keap1 Model mRNA0.2 e WT 0.0 Keap1 Nrf2-null ‐ ∗ KD 1.4 Wild-type Keap1 1.2 Keap1-KD ‐ ∗ ression1.0 HKO p Keap1-HKO 080.8 0.6 Keap1 0.4 Keap1 Protein ex β‐ 0.2 actin 0.0 Nrf2-null ∗ Wild-type 4 ion Keap1-KD ∗ Nrf2 3 Nrf2 Col 2 Keap1-HKO ‐null 2 1 ∗ Protein express ∗ Wild 0 N.A. ‐type Nrf2-null Wild-type Keap1-KD Keap1-HKO Keap1 ‐KD Keap1 Nrf2 ‐HKO Messenger Content RNA and were Protein 20 Increased 15 Nqo1 Levels 10 expression A in of 5 Nrf2 mRN Nrf2 ∗ “Gene ‐null 0 ∗ Target WT dose Nrf2-null ∗ Genes, Wild-type Keap1 ‐res Keap1-KD ‐KD Keap1 ponse” 4 Keap1-HKO as ‐HKO well sion3 20 Model s Gclc as 15 2 Nqo1 Nqo1 GSH 10 1 ∗ ein expression mRNA expre t Gclc 5 ∗ ∗ 0 Pro Β‐actin 0 ∗ Nrf2-null N.A. Nrf2-null Wild-type Wild-type Keap1-KD 252.5 Keap1-KD 12 Keap1-HKO 2.0 Keap1-HKO Gclc 10 1.5 Cytosol GSH 8 er tissue 1.0 v otein expression 6 ∗ r 050 P .5 ∗ 4 ∗ 0.0 mol/g li ∗ μ 2 Nrf2-null 0 Wild-type Nrf2-null Keap1-KD Keap1-HKO Wild-type Keap1-KD Keap1-HKO Transcriptional Profiling by Microarray Analysis Nrf2 Nrf2‐null Wild‐type Keap1‐KD Keap1‐HKO n=3 n=3 n=3 n=3 Liver Total RNA Microarray Data Analysis from Microarray Raw data from microarray analysis (CEL file) imported into “R” program using affy package Processed by Robust Multichip Averaging (gcRMA) package The mean probe signal intensities higher than log2100 in at least one genotype group were selected for further analysis Analysis of variance by Linear Models for Microarray Data (Limma) Package Gene symbols and other annotations were obtained from the mouse 4302 and anaffy packages Constitutively WT>Nrf2 ‐null Keap1 Induced 97 or 17 ‐KD>WT Suppressed 81 115 25 61 Genes Keap1 294 WT<Nrf2 ‐HKO>Keap1 ‐null Keap1 6 Induced genes ‐KD 124 4 45 ‐KD<WT 8021 old-induction2 F ∗ ∗ 113 80 ∗ 48 0 90 Nrf2-null Keap1 329 Wild-type ‐ Keap1-KD HKO<Keap1 6 Keap1-HKO Suppressed genes 4 ∗ ‐KD old-induction ∗ F 2 8021 0 ∗ Nrf2-null Wild-type Keap1-KD Keap1-HKO Annotation clustering using DAVID analysis Term Enrichment Score Gene Symbols Top annotation cluster for the set of genes induced through Nrf2 activation Glutathione transferase and Gstm1, Gss, Gsta2, Gstm2, Gsta3, Gstm3, 8.2 glutathione metabolism Gclc, Gstm4, Gsta4, Gpx4, Gstm6 Cyp2g1, Xdh, Ptgr1, Htatip2, Ugdh, Coq7, Oxidation reduction and NADPH 6.0 Fth1, Akr1c13, Akr1a4, Cryl1, Fmo1, Gpx4, bind enzymes Aox1, Cyp2a5, Txnrd1, Nqo1, Srxn1 Carboxylesterase 3.9 Ces2, Ces1, BC015286, Ces5 Xdh, Ftl1, Gclc, Fech, Ftl2, Hexa, Hexb, Chemical and iron homeostasis 3.2 Bnip3, Afg3l2, Fth1, Abcg8, Anxa7 Cofactor biosynthetic process 2.4 Gss, Fech, Gclc, Coq7, Gch1 Top annotation cluster for the set of genes suppressed through Nrf2 activation Response to nutrient and 232.3 A1Adi2CAAvpr1a, Adipor2, Cp, Apom, Cbs extracellular stimulus What Drug Processing Genes are Altered by Nrf2 activa tion • Uptake transporters • Phase‐I enzymes • Phase‐II enzymes • Efflux transporters WT Nrf2 null Keap1HKO Keap1KD - null 2210023G05Rik Fmo1 Cyp2d22 Gsta4 Gstm2 Cda Cyp2a5 Gsta2 Gstm3 Nf2 N Gstm1 r Gstm4 f2 Gsto1 Mgst3 ‐ Cyp1a2 nu Cyp2b10 Adh1 ll Cyp2d9 Drug Gstt2 Wild Gstz1 Aox1 Xdh Ces5 ‐ Gstm1 2 type Gstm6 metabolizing Gstp1 Dpys Gsta3 Ugt1a6a Ugt1a9 K1K Cyp2d26 eap Umps Cyp2c44 Cyp2c50 1 Uck1 ‐ Ugt2b5 KD Ugt2b36 Cyp2c54 Hprt1 K Cyp2c55 K1 Upb1 eap genes Tpmt Adh4 Nat2 1 Es1 ‐ Cyp2c70 HKO Ugt2a3 Dpyd EG13909 Nrf2 Gmps Fmo5 Itpa Ugt2b1 Adh5 Cyp2c29 Cyp2a12 Tpmt 2 Ugt2b34 Cyp2e1 Mgst1 Cyp2c37 Es22 Ces3 Cyp3a25 Maob Cyp2d10 Gstt1 Cyp3a13 Cyp3a11 Gstk1 Impdh2 Gstm5 Gstm7 Gusb Major P450 Drug Metabolizing Genes in Human Human Gene Mouse Inducers Nuclear ortholog receptor CYP1A2 Cyp1a2 Omeprazole AhR CYP2A6 Cyp2a4 Barbiturates CAR CYP2B6 Cyp2b10 N.A.