Oryza Rufipogon

Total Page:16

File Type:pdf, Size:1020Kb

Oryza Rufipogon Blackwell Science, LtdOxford, UKPSBPlant Species Biology0913-557XThe Society for the Study of Species Biology, 2005August 20052028392Original ArticleCOMMON WILD RICE BIODIVERSITYZ. SONG Et al. http://www.paper.edu.cn Plant Species Biology (2005) 20, 83–92 Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China ZHIPING SONG, BO LI, JIAKUAN CHEN and BAO-RONG LU Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Handan Road 220, Shanghai 200433, China Abstract Common wild rice (Oryza rufipogon Griff.), known as the ancestor of Asian cultivated rice (Oryza sativa L.), is the most important germplasm for rice improvement. The first male sterility gene was found in the wild rice, and introduced to the cultivated rice, which launched the fast development of the high-yielding hybrid rice. Other agronomically beneficial traits in the wild rice, such as rice tungro virus resistance, bacterial leaf blight (Xa21 gene) resistance and acid sulfate soil tolerance, have played important roles in rice breeding. China has the northernmost distribution area of wild rice possessing great genetic diversity. However, most of the populations of this species have disappeared in China over the last three decades, mainly caused by habitat loss, fragmentation and other human disturbances. Unfortunately, the decline of existing populations still continues. In the present study, we reviewed studies on genetic diversity and conservation of this wild rice in China, concentrating on population structure, pollen competition, pollen/ gene flow from cultivated rice to wild rice, and ecological restoration in relation to in situ conservation. The relatively high genetic diversity of populations of O. rufipogon in China suggests that there is great value for conservation. Considerable gene flow from cultivated rice to wild rice may alter the genetic structure of natural populations of O. rufipogon and eventually lead to its genetic erosion. Pollen competition between wild and cultivated rice has caused a low rate of crop-to-wild gene flow, but it does not completely prevent gene flow from the crop. Effective isolation measures should be undertaken in the regions where in situ conservation of O. rufipogon is carried out. Reintroduction is an important alternative for the in situ conservation of wild rice species. As wild rice is an important genetic resource, both in situ and ex situ conservation strategies are needed. Keywords: common wild rice, conservation, gene flow, genetic diversity, genetic resource, Oryza rufipogon, restoration. Received 7 January 2005; revision received 22 March 2005; accepted 5 April 2005 Introduction crop species, particularly those in the gene pool of wild relatives of crop species, will provide many more oppor- The continuous increase of the global population, the tunities. Through millions of years of evolution and reduction of farming land, the increasing shortage of genetic adaptation to environments, the wild relatives water and the loss of rural labor to the urban centers have accumulated abundant genetic diversity. Many traits profoundly challenge the world’s food supply. To meet are unique to the wild relatives and might be beneficial to the increasing demands for food supply, the human race the improvement of cultivated species. Serving as a vast has to significantly enhance crop productivity, for which genetic reservoir, wild relatives provide elite germplasm fuller exploitation and utilization of genetic resources in for improving crop varieties by transferring beneficial genes to the crops (Lu 1996, 1998). Correspondence: Bao-Rong Lu The Asian cultivated rice, Oryza sativa L., and African Email: [email protected] cultivated rice, Oryza glaberrima Steud., are classified in © 2005 The Society for the Study of Species Biology 转载 中国科技论文在线 http://www.paper.edu.cn 84 Z. SONG ET AL. the genus Oryza, which includes over 20 wild species that turbances to its habitats (Gao 2003). Conservation and are widely distributed in the pan-tropics and subtropics, related studies of O. rufipogon have been extensively car- particularly in Asian countries (Khush 1997). The wild ried out in China. Here we briefly summarized some of species in the genus Oryza and in the related genera in the the progress made over the past decades. tribe Oryzeae constitute an exceptionally valuable gene pool for rice improvement (Lu 1996; Bellon et al. 1998; A brief description of common wild rice Zhong et al. 2000). There are many successful examples of utilizing biodiversity in the rice gene pool, particularly in Common wild rice is here referred to as the perennial wild the wild Oryza gene pool for rice improvement. The most rice O. rufipogon, although this taxon is also thought to successful example of utilizing the wild Oryza species is include the annual wild O. nivara by some authors (e.g. hybrid rice, where the male sterility (MS) gene was intro- Chang 1976; Matsuo & Hoshikawa 1993) and was once duced from the perennial common wild rice (CWR, Oryza named as Oryza perennis by Oka (1988) because the plant rufipogon Griff.) found in Hainan Province (formerly has species-specific characteristics compared with other Hainan Island, a part of Guangdong Province), China, Oryza species. O. rufipogon has short to long rhizomes and subsequently the most essential MS system of hybrid from which tillers can emerge far from the main stalk. The rice was developed (Yuan 1993). Another prominent period for its vegetative growth is quite long (Matsuo & example is the varieties of grassy stunt virus-resistant Hoshikawa 1993). rice, where the virus-resistant gene was incorporated The ligule is long and split into two at its sharp tip. The from one accession of the annual CWR (Oryza nivara panicles are open and the spikelets are slender. The anther Sharma et Shastry) collected from India (Khush 1977). of O. rufipogon is usually long and is of a yellowish-white Recently, many disease-resistant and insect-resistant color. The stigma is colored from white to dark, but genes, high-yielding genes and abiotic stress-tolerant mainly pale purple; it appears out of the glume at flow- genes have also been found in wild Oryza species (Khush ering time (Fig. 1). The grain is usually slender with a long et al. 1990; Jena & Khush 1990; Brar et al. 1996; Xiao et al. awn (unhusked), is of a dark purple color at maturity and 1996). Some of these genes have successfully been trans- falls naturally. The color of the husked grain is red. The ferred to varieties of cultivated rice. Conserving the biodi- flowering time is basically the same as that of O. sativa, versity of the wild Oryza species is therefore essential for which is responsive to photoperiods. The cross-fertility is the world’s sustainable food supply and becomes increas- high in this species. ingly important for continued availability and sustainable Oryza rufipogon is widely distributed in the tropics and use of these valuable genetic resources. subtropics of Asia (Vaughan 1994). This species is The perennial CWR, Oryza rufipogon Griff., known as reported to occur in 113 counties of eight provinces in the ancestor of Asian cultivated rice (O. sativa L.), is the south China, including Guangdong, Guangxi, Hainan, most important germplasm for rice improvement (Oka Yunnan, Hunan, Jiangxi, Fujian and Taiwan (Taiwan 1988). The collected samples of this wild rice species have O. rufipogon populations disappeared in 1978; Kiang et al. been extensively used by scientists and breeders from 1979; Fig. 2). The range of CWR in China stretches from agricultural research stations and universities for breed- 18∞09¢N to 28∞14¢N and 100∞40¢E to 121∞15¢E (Pang & ing and research. The well-known Chinese rice variety Chen 2002). ‘Zhongshan no. 1’, which is tolerant of cold tempera- tures and other abiotic stresses, was bred by Profes- Exploration and collection of common wild rice sor Ding Ying in 1931 through wide hybridization with in China O. rufipogon, except for the famous hybrid that incorpo- rated the MS trait identified in O. rufipogon in the early The exploration and collection of wild Oryza species in 1970s (Yuan et al. 1989; Yuan 1993). Other agronomically China can be traced back to as early as 1917 when Dr E. beneficial traits, such as high-yielding, rice tungro virus D. Merrill and colleagues first found the perennial CWR resistance, elongation ability and tolerance of acid sulfate (O. rufipogon) at Lofu Mountain and the Shilong Plain in soil, found in the wild rice are of great potential for rice Guangdong Province (Wu 1990). It was Professor Ding breeding (Xiao et al. 1996; Bellon et al. 1998). China is the Ying who initiated the systematic exploration and collec- northern boundary of O. rufipogon’s natural range, where tion of wild Oryza species in China. In 1926, he found great genetic diversity has been found in its populations O. rufipogon and collected its samples in many more sites, (Wu 1990; Zhou 1995; Wang & Sun 1996; Gao 1997; Ge such as those in Guangzhou, Heiyang, Zhengcheng, et al. 1999; Song et al. 2003a). However, this species has Qingyuan and Sashui in Guangdong Province, on Hainan been under serious threats in China over the past decades Island, and in the Xijiang River Basin in Guangxi Prov- because of the changes in farming systems, economic ince. These findings and collections had significantly development, rapid urbanization and other human dis- enriched the knowledge of Chinese wild Oryza species © 2005 The Society for the Study of Species Biology Plant Species Biology 20, 83–92 中国科技论文在线 http://www.paper.edu.cn COMMON WILD RICE BIODIVERSITY 85 spikelet stigma anther awn Fig. 1 A photo showing part of an opening panicle of Oryza rufi- pogon. After 1949, the exploration and collection of wild Oryza germplasm in China was further emphasized and came to a new era.
Recommended publications
  • 10. GLOCHIDION J. R. Forster & G. Forster, Char. Gen. Pl. 57. 1775, Nom. Cons
    Fl. China 11: 193–202. 2008. 10. GLOCHIDION J. R. Forster & G. Forster, Char. Gen. Pl. 57. 1775, nom. cons. 算盘子属 suan pan zi shu Li Bingtao (李秉滔 Li Ping-tao); Michael G. Gilbert Agyneia Linnaeus; Bradleia Banks ex Gaertner [“Bradleja”]. Trees or shrubs, monoecious, rarely dioecious; indumentum of simple hairs, often absent. Leaves alternate, distichous, or spiral; stipules thick, mostly persistent; petiole short; leaf blade simple, margin entire, venation pinnate. Flowers axillary or supra-axillary, fascicled or in short cymes or umbels, proximal axils with male flowers, distal axils usually with female flowers, usually distinctly pedicellate. Male flowers: pedicels slender or almost absent; sepals 5 or 6, imbricate; petals absent; disk absent; stamens 3–8, connate into an oblong or ellipsoid column, shorter than sepals; anthers 2-locular, extrorse, linear, longitudinally dehiscent, connectives prolonged into an erect acumen; pistillode absent. Female flowers: pedicels stout and short or subsessile; sepals as in male, but slightly thicker; ovary globose, 3–15-locular; ovules 2 per locule; styles connate into a short, thick, cylindric column, apex lobed or toothed, rarely free. Fruit a capsule, globose or depressed globose, ± prominently longitudinally grooved, sunken at apex, dehiscent into 3–15 2-valved cocci when mature, rarely unlobed; exocarp leathery or papery; endocarp crustaceous; styles usually persistent. Seeds not strophiolate, hemispheric or laterally compressed; endosperm fleshy; cotyledon flattened. About 200 species: chiefly in tropical Asia, the Pacific islands, and Malaysia, a few in tropical America and Africa; 28 species (seven endemic, one introduced) in China. Glochidion is noteworthy for its pollination mechanism, which involves a symbiotic relationship with moths of the genus Epicephala closely paralleling that found in Yucca (Kato et al., Proc.
    [Show full text]
  • (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII.
    [Show full text]
  • World Bank Document
    Public Disclosure Authorized Public Disclosure Authorized Goods and Works Procurement Plan in 2007 2007 Name of Subproject: Nuisance Free Vegetable, Changsha County ( Review by Issuing of Bid Contract Cost estimate Procurement P- Contract No. Bank BD opening signing Contract Description method Q USD ( RMB (Y/N) Equivalent Y/N) Works Public Disclosure Authorized Public Disclosure Authorized Vegetable processing 800 NCB Hn workshop 800 , Vegetable 300 à à 1 1 à à à quality test room 300 NCB GJP 80 type plastic sheds GJP80 Hn à à 1 1 à à à 42979 42979 m2 Subtotal à à Goods Public Disclosure Authorized Public Disclosure Authorized 1 Public Disclosure Authorized Public Disclosure Authorized Goods and Works Procurement Plan in 2007 2007 Name of Subproject: Nuisance Free Vegetable, Changsha County ( Review by Issuing of Bid Contract Cost estimate Procurement P- Contract No. Bank BD opening signing Contract Description method Q USD ( RMB (Y/N) Equivalent Y/N) Vegetable Test Devices, including: dehumidifiers 4sets, air conditioners 4sets, refrigerators 4sets, fresh- keeping refrigerated cabinets 4sets, ultrasonic cleaners 3sets, centrifuges 3sets, drying cabinets 3sets, stainless steel electrical distillers 6sets, rotary evaporators 4sets, rapid 16 Hn à à 1 1 detector of pesticide residues 6sets, residual pesticide meters 6sets, full automatic thermo wellwash plus 1sets, electro-heating constant temperature cultivators 6sets, 3+ multifunctional vibrators 6sets, precise PH meters 6sets, freezing dryers 6sets, spiral slice vacuum
    [Show full text]
  • Assessment and Conservation of Threatened Bird Species at Laojunshan, Sichuan, China
    CLP Report Assessment and conservation of threatened bird species at Laojunshan, Sichuan, China Submitted by Jie Wang Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R.China E-mail:[email protected] To Conservation Leadership Programme, UK Contents 1. Summary 2. Study area 3. Avian fauna and conservation status of threatened bird species 4. Habitat analysis 5. Ecological assessment and community education 6. Outputs 7. Main references 8. Acknowledgements 1. Summary Laojunshan Nature Reserve is located at Yibin city, Sichuan province, south China. It belongs to eastern part of Liangshan mountains and is among the twenty-five hotspots of global biodiversity conservation. The local virgin alpine subtropical deciduous forests are abundant, which are actually rare at the same latitudes and harbor a tremendous diversity of plant and animal species. It is listed as a Global 200 ecoregion (WWF), an Important Bird Area (No. CN205), and an Endemic Bird Area (No. D14) (Stattersfield, et al . 1998). However, as a nature reserve newly built in 1999, it is only county-level and has no financial support from the central government. Especially, it is quite lack of scientific research, for example, the avifauna still remains unexplored except for some observations from bird watchers. Furthermore, the local community is extremely poor and facing modern development pressures, unmanaged human activities might seriously disturb the local ecosystem. We conducted our project from April to June 2007, funded by Conservation Leadership Programme. Two fieldwork strategies were used: “En bloc-Assessment” to produce an avifauna census and ecological assessments; "Special Survey" to assess the conservation status of some threatened endemic bird species.
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Soft Anatomy of the Early Cambrian Arthropod Isoxys Curvirostratus from the Chengjiang Biota of South China with a Discussion on the Origination of Great Appendages
    Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages DONG−JING FU, XING−LIANG ZHANG, and DE−GAN SHU Fu, D.−J., Zhang, X.−L., and Shu, D.−G. 2011. Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages. Acta Palaeontologica Polonica 56 (4): 843–852. An updated reconstruction of the body plan, functional morphology and lifestyle of the arthropod Isoxys curvirostratus is proposed, based on new fossil specimens with preserved soft anatomy found in several localities of the Lower Cambrian Chengjiang Lagerstätte. The animal was 2–4 cm long and mostly encased in a single carapace which is folded dorsally without an articulated hinge. The attachment of the body to the exoskeleton was probably cephalic and apparently lacked any well−developed adductor muscle system. Large stalked eyes with the eye sphere consisting of two layers (as corneal and rhabdomeric structures) protrude beyond the anterior margin of the carapace. This feature, together with a pair of frontal appendages with five podomeres that each bear a stout spiny outgrowth, suggests it was raptorial. The following 14 pairs of limbs are biramous and uniform in shape. The slim endopod is composed of more than 7 podomeres without terminal claw and the paddle shaped exopod is fringed with at least 17 imbricated gill lamellae along its posterior margin. The design of exopod in association with the inner vascular (respiratory) surface of the carapace indicates I.
    [Show full text]
  • SMRT Sequencing of the Oryza Rufipogon Genome Reveals
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905281; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SMRT sequencing of the Oryza rufipogon genome 2 reveals the genomic basis of rice adaptation 3 4 Wei Li1, Kui Li1, Ying Huang3, Cong Shi2,4, Wu-Shu Hu3, Yun Zhang2, Qun-Jie Zhang1,2, 5 En-Hua Xia2, Ge-Ran Hutang2,4, Xun-Ge Zhu2,4, Yun-Long Liu2, Yuan Liu2, Yan Tong2, 6 Ting Zhu2,5, Hui Huang2, Dan Zhang1, Yuan Zhao6, Wen-Kai Jiang2, Jie Yuan3, 7 Yong-Chao Niu7, Cheng-Wen Gao2 & Li-Zhi Gao1,2 8 9 1 Institution of Genomics and Bioinformatics, South China Agricultural University, 10 Guangzhou 510642, China. 2 Plant Germplasm and Genomics Center, Germplasm Bank 11 of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy 12 of Sciences, Kunming 650204, China. 3 TGS Inc., Shenzhen 518000, China. 4 University 13 of the Chinese Academy of Sciences, Beijing 100039, China. 5 College of Life Science, 14 Liaoning Normal University, Dalian 116081, China. 6 Yunnan Agricultural University, 15 Kunming 650201, China. 7 Genosys Inc., Shenzhen 518000, China. 16 17 These authors contributed equally: Wei Li, Kui Li, Ying Huang, Cong Shi. 18 Correspondence and requests for materials should be addressed to L.Z.G. (email: 19 [email protected]) 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905281; this version posted January 15, 2020.
    [Show full text]
  • Review of the Genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae)
    A peer-reviewed open-access journal ZooKeys 482:Review 143–155 of the(2015) genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae) 143 doi: 10.3897/zookeys.482.8713 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Review of the genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae) Miao-Miao Li1,2, Xian-Wei Liu2, Kai Li1 1 School of Life Science, East China Normal University, Shanghai 200241, China 2 Shanghai Entomology Museum, Chinese Academy of Sciences, Shanghai 200032, China Corresponding authors: Kai Li ([email protected]); Xian-Wei Liu ([email protected]) Academic editor: David Eades | Received 8 October 2014 | Accepted 28 January 2015 | Published 16 February 2015 http://zoobank.org/01D7EF6F-8540-43CE-A290-49265FCAE605 Citation: Li M-M, Liu X-W, Li K (2015) Review of the genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae). ZooKeys 482: 143–155. doi: 10.3897/zookeys.482.8713 Abstract In the present paper, the genus Apotrechus Brunner-Wattenwyl, 1888 is revised. Two new species from China are described and illustrated: Apotrechus quadratus sp. n. and Apotrechus truncatolobus sp. n.. A new key and the distributional data are given. Keywords Gryllacrididae, Gryllacridinae, Apotrechus, new species, China Introduction The genus Apotrechus was proposed by Brunner-Wattenwyl (1888), with the type spe- cies Apotrechus unicolor Brunner-Wattenwyl, 1888. This genus resembles the genus Eremus Brunner-Wattenwyl, 1888, but differs from the latter in: smooth frons, spine- less hind tibia and absence of male styli. Liu and Yin (2002) first studiedApotrechus in China, described one new species A. nigrigeniculatus. Liu and Bi (2008) gave a key of Apotrechus from China containing three species, and two new species A.
    [Show full text]
  • Australian Native Rice — a New Sustainable Wild Food Enterprise —
    Australian Native Rice — A new sustainable wild food enterprise — RIRDC Publication No. 10/175 Australian Native Rice: A new sustainable wild food enterprise By P.A.S Wurm, L.C. Campbell, G.D. Batten and S.M. Bellairs February 2012 RIRDC Publication No. 10/175 RIRDC Project No. PRJ000347 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-142-6 ISSN 1440-6845 Australian Native Rice: A new sustainable wild food enterprise Publication No. 10/175 Project No. PRJ-000347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright.
    [Show full text]
  • Rice Scientific Classification Kingdom: Plantae Division: Magnoliophyta
    Rice From Wikipedia, the free encyclopedia Rice Oryza sativa Scientific classification Kingdom: Plantae Division: Magnoliophyta Class: Liliopsida Order: Poales Family: Poaceae Genus: Oryza Species • Oryza glaberrima • Oryza sativa Rice refers to two species ( Oryza sativa and Oryza glaberrima ) of grass , native to tropical and subtropical southern & southeastern Asia and to Africa , which together provide more than one fifth of the calories consumed by humans [1]. (The term "wild rice" can refer to wild species of Oryza, but conventionally refers to species of the related genus Zizania , both wild and domesticated.) Rice is an annual plant , growing to 1–1.8 m tall, occasionally more, with long slender leaves 50–100 cm long and 2–2.5 cm broad. The small wind-pollinated flowers are produced in a branched arching to pendulous inflorescence 30–50 cm long. The seed is a grain (caryopsis) 5–12 mm long and 2–3 mm thick. Contents • 1 Cultivation • 2 Preparation as food o 2.1 Cooking • 3 History o 3.1 Etymology o 3.2 History of cultivation • 4 World production and trade • 5 Rice Pests • 6 Cultivars Cultivation The planting of rice is often a labour intensive process Rice is a dietary staple for a large part of the world's human population , making it the most consumed cereal grain . Rice is the world's third largest crop, behind maize ("corn") and wheat . Rice cultivation is well suited to countries and regions with low labour costs and high rainfall , as it is very labour-intensive to cultivate and requires plenty of water for irrigation , much like the licorice crops found in Eastern Europe.
    [Show full text]
  • Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China
    RESEARCH ARTICLE Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China Xiujia Huan1,2*, Houyuan Lu1,3*, Can Wang1,2, Xiangan Tang4, Xinxin Zuo1, Yong Ge1,2, Keyang He1,2 1 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China, 4 Soil & Fertilizer and Environmental & Resources Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi Province, China * [email protected] (XH); [email protected] (HL) Abstract Bulliform phytoliths play an important role in researching rice origins as they can be used to distinguish between wild and domesticated rice. Rice bulliform phytoliths are character- OPEN ACCESS ized by numerous small shallow fish-scale decorations on the lateral side. Previous stud- Citation: Huan X, Lu H, Wang C, Tang X, Zuo X, Ge ies have shown that domesticated rice has a larger number of these decorations than wild Y, et al. (2015) Bulliform Phytolith Research in Wild rice and that the number of decorations 9 is a useful feature for identifying domesticated and Domesticated Rice Paddy Soil in South China. PLoS ONE 10(10): e0141255. doi:10.1371/journal. rice. However, this standard was established based on limited samples of modern rice pone.0141255 plants. In this study, we analyzed soil samples from both wild and domesticated rice pad- Editor: Xiaoyan Yang, Chinese Academy of dies. Results showed that, in wild rice soil samples, the proportion of bulliform phytoliths Sciences, CHINA with 9 decorations was 17.46% ± 8.29%, while in domesticated rice soil samples, the cor- ± Received: August 8, 2015 responding proportion was 63.70% 9.22%.
    [Show full text]