A) Blood Samples; B) Skin Biopsies

Total Page:16

File Type:pdf, Size:1020Kb

A) Blood Samples; B) Skin Biopsies Supplementary Data – Table S1. Functional categories most significantly over-represented amongst genes, whose changed expression level following treatment with ES-285, correlates with increasing dose. A) Blood samples; B) Skin biopsies. Functional categories are ranked by the degree of their over-representation, based on a variant of the one-tailed Fisher exact probability (EASE score). Categories most highly over-represented are at the top. A) Blood samples EASE Functional Category score Gene Symbol cell proliferation 3x10-5 AIF1; ANAPC4; BAX; BCL2; BIRC5; CCNT1; CCNT2; CDC6; CDK2AP1; CDK4; CDK5; CDKN1B; CHAF1B; CHEK1; CHEK2; COL18A1; CSF1R; CUL4B; CXCL10; DLG3; DTYMK; ELK3; EMP2; EPS15; FGB; FLT1; FYN; GPS1; GSPT1; GTF2H1; HDAC3; HGF; HGS; HT014; HYPE; IFI16; IFRD2; IGF1R; ILF3; KATNA1; KLF4; KLK10; KRAS2; LIG3; LMNB2; MCM4; MET; MLH1; MSH2; MXI1; NBL1; NOL1; ORC1L; PDGFA; PNUTL1; PPARBP; PPBP; PPP3CB; PPP5C; PRKCA; PSIP1; PSMD8; PTEN; PURA; RAP1A; RBBP4; RBBP6; RBM11; RBM9; REV3L; RFC3; RFP2; RRM2; SCAND1; STAT1; STRN3; TFDP1; THPO; TM4SF9; TNFRSF5; TNFRSF7; TOB1; TOP1; TP53; UBE2V1; UBE2V2; VEGFB; VEGFC; WT1; ZNF259 cell cycle 1x10-4 AIF1; ANAPC4; BAX; BCL2; BIRC5; CCNT1; CCNT2; CDC6; CDK2AP1; CDK4; CDK5; CDKN1B; CHAF1B; CHEK1; CHEK2; CUL4B; DTYMK; ELK3; FYN; GPS1; GSPT1; GTF2H1; HDAC3; HGF; HYPE; IGF1R; ILF3; KATNA1; KLK10; KRAS2; LIG3; LMNB2; MCM4; MLH1; MSH2; NBL1; NOL1; ORC1L; PDGFA; PNUTL1; PPARBP; PPBP; PPP3CB; PPP5C; PRKCA; PSMD8; PTEN; PURA; RAP1A; RBBP4; RBBP6; RBM11; REV3L; RFC3; RFP2; RRM2; SCAND1; STAT1; STRN3; TFDP1; TOP1; TP53; UBE2V1; UBE2V2; VEGFB; VEGFC; WT1 G2/M transition of mitotic cell cycle 0.005 ANAPC4; BIRC5; CCNT1; CCNT2; CDC6; CDKN1B; CHEK1; GTF2H1; PTEN protein catabolism 0.01 ADAM15; ADAM9; ADAMTS10; AGTPBP1; ANAPC4; BLMH; BMP1; C1ORF35; C1R; C1S; CAPN2; CAPN3; CASP9; CDKL5; COPS7B; CPA3; CPB2; CTSB; DPP4; DPP7; FBXO11; FOLH1; HGF; IF; KLK10; LNPEP; LOC63929; M17S2; METAP2; MMP11; NDST1; NPEPPS; PSMD8; PSMF1; RNF13; SERPINE2; SIAH2; SMURF2; SUPT16H; UBE2B; UBE2I; UCHL3; USP1 S phase of mitotic cell cycle 0.01 CDC6; CDK2AP1; CHAF1B; LIG3; LMNB2; MCM4; MLH1; MSH2; ORC1L; PPARBP; PURA; RBBP4; REV3L; RFC3; RRM2; TOP1 G1/S transition of mitotic cell cycle 0.01 CCNT1; CCNT2; CDC6; CDK4; CDKN1B; CHEK1; GSPT1; GTF2H1; PTEN anti-apoptosis 0.02 BAX; BCL2; BIRC2; BIRC3; BIRC5; BIRC6; BNIP2; CCL2; IGF1R; PRDX2; TNFRSF6; TNFRSF7 negative regulation of cell cycle 0.02 BAX; CDK2AP1; KLK10; MLH1; MSH2; NBL1; PTEN; RAP1A; RFP2; TP53; WT1 mitotic cell cycle 0.02 ANAPC4; BIRC5; CCNT1; CCNT2; CDC6; CDK2AP1; CDK4; CDKN1B; CHAF1B; CHEK1; GSPT1; GTF2H1; HGF; KATNA1; LIG3; LMNB2; MCM4; MLH1; MSH2; ORC1L; PPARBP; PPP5C; PTEN; PURA; RBBP4; REV3L; RFC3; RRM2; TOP1 DNA replication 0.02 CDC6; CDK2AP1; CHAF1B; LIG3; MCM4; MLH1; MSH2; ORC1L; PPARBP; PURA; RBBP4; REV3L; RFC3; RRM2; TOP1 regulation of CDK activity 0.03 CCNT1; CCNT2; CDC6; CDKN1B; CHEK1; GTF2H1; PTEN ubiquitin cycle 0.03 BIRC6; FBXO11; HECTD1; ITCH; LOC92912; SMURF2; UBE2B; UBE2V1; UBE2V2; UBR1 humoral immune response 0.03 ADA; ADAR; BCL2; C1R; C1S; CCL2; CLECSF6; CSF1R; ENTPD1; IF; IRF4; ITGB2; TNFRSF5; TNFRSF7; YY1 B) Skin biopsies EASE Functional Category score Gene Symbol cell cycle 0.001 ABL1; ATR; AXIN1; BIRC5; CDC25C; CDK6; CETN1; CETN2; CHC1; CUL4A; CUL5; DCTN1; E2F3; E2F4; EREG; FGF7; FGF9; FNBP4; FOS; FZR1; HDAC7A; IFITM1; KIAA0241; LATS1; LIG3; LMNB2; MCM4; MCM5; MSH3; MSH5; MTCP1; NEK3; NF2; NOLC1; PARD6B; PARD6G; PB1; PGF; PPP6C; PRIM2A; PTN; RAD17; RAD50; S100A11; SH3BP4; SUGT1; TLK2; TSC1; TSC2; UBE1; UBE2V1; VAV1; VEGF mitotic cell cycle 0.003 ABL1; BIRC5; CDC25C; CDK6; CETN1; CETN2; CHC1; CUL4A; CUL5; DCTN1; FNBP4; FZR1; KIAA0241; LATS1; LIG3; LMNB2; MCM4; MCM5; MSH3; MSH5; NEK3; NOLC1; PB1; PPP6C; PRIM2A; RAD17; S100A11; SUGT1; UBE1 cell proliferation 0.009 ABL1; AREG; ATR; AXIN1; BIRC5; CD86; CDC25C; CDK6; CETN1; CETN2; CHC1; CSE1L; CSRP2; CTBP2; CUL4A; CUL5; DCTN1; E2F3; E2F4; EMP3; EREG; FGB; FGF7; FGF9; FNBP4; FOS; FZR1; GAB1; HDAC7A; HDGFRP3; IFITM1; KIAA0241; LATS1; LIG3; LMNB2; MCM4; MCM5; MSH3; MSH5; MTCP1; NEK3; NF2; NOLC1; PARD6B; PARD6G; PB1; PGF; PPP1CB; PPP6C; PRIM2A; PRKAR1A; PTN; RAD17; RAD50; S100A11; SH3BP4; SUGT1; TLK2; TM4SF9; TPD52L2; TSC1; TSC2; UBE1; UBE2V1; VAV1; VEGF nuclear division 0.02 CDC25C; CETN1; CETN2; CHC1; DCTN1; FZR1; LATS1; LIG3; MSH5; NEK3; NOLC1; PB1; RAD17; RAD50; SUGT1 biological_process unknown 0.03 ABCC4; ABL1; ADFP; BCL7B; C14ORF118; C16ORF34; CALR; CAMK2G; CH-TOG; CLSPN; COL5A3; CSRP2; CXADR; CYYR1; DCPS; DJ167A19.1; DLK1; DMD; DOM3Z; DSCR5; EIF2A; EIF3S2; ELF2; FAM3C; GPR107; IFIT1; LMNB2; LOC340186; LRPPRC; LRRFIP2; PIGM; PLAC1; PPIL2; PRCC; RBMX; SDC2; SH3BP4; TGM2; WDR9; WWOX; ZNF198 M phase 0.03 CDC25C; CETN1; CETN2; CHC1; DCTN1; FZR1; LATS1; LIG3; MSH5; NEK3; NOLC1; PB1; RAD17; RAD50; SUGT1 telomere maintenance 0.04 HNRPD; RAD50; TINF2; TNKS2 coenzyme and prosthetic group 0.04 ATP6V1F; COQ6; COX10; GCLM; GSR; HMOX1; HPGD; MTR; PANK3; PDHA1; RDH5; WWOX metabolism S phase of mitotic cell cycle 0.04 ABL1; FNBP4; KIAA0241; LIG3; LMNB2; MCM4; MCM5; MSH3; MSH5; PRIM2A; RAD17; S100A11; UBE1 mitosis 0.05 CDC25C; CETN1; CETN2; CHC1; DCTN1; FZR1; LATS1; NEK3; NOLC1; PB1; RAD17; SUGT1 amino acid biosynthesis 0.05 ALDH4A1; ASNS; CTBP2; HPGD; MTR; RDH5; WWOX M phase of mitotic cell cycle 0.05 CDC25C; CETN1; CETN2; CHC1; DCTN1; FZR1; LATS1; NEK3; NOLC1; PB1; RAD17; SUGT1 .
Recommended publications
  • Ubiquitin-Conjugating Enzyme UBE2J1 Negatively Modulates
    Feng et al. Virology Journal (2018) 15:132 https://doi.org/10.1186/s12985-018-1040-5 RESEARCH Open Access Ubiquitin-conjugating enzyme UBE2J1 negatively modulates interferon pathway and promotes RNA virus infection Tingting Feng1, Lei Deng1, Xiaochuan Lu1, Wen Pan1, Qihan Wu2* and Jianfeng Dai1,2* Abstract Background: Viral infection activates innate immune pathways and interferons (IFNs) play a pivotal role in the outcome of a viral infection. Ubiquitin modifications of host and viral proteins significantly influence the progress of virus infection. Ubiquitin-conjugating enzyme E2s (UBE2) have the capacity to determine ubiquitin chain topology and emerge as key mediators of chain assembly. Methods: In this study, we screened the functions of 34 E2 genes using an RNAi library during Dengue virus (DENV) infection. RNAi and gene overexpression approaches were used to study the gene function in viral infection and interferon signaling. Results: We found that silencing UBE2J1 significantly impaired DENV infection, while overexpression of UBE2J1 enhanced DENV infection. Further studies suggested that type I IFN expression was significantly increased in UBE2J1 silenced cells and decreased in UBE2J1 overexpressed cells. Reporter assay suggested that overexpression of UBE2J1 dramatically suppressed RIG-I directed IFNβ promoter activation. Finally, we have confirmed that UBE2J1 can facilitate the ubiquitination and degradation of transcription factor IFN regulatory factor 3 (IRF3). Conclusion: These results suggest that UBE2 family member UBE2J1 can negatively regulate type I IFN expression, thereby promote RNA virus infection. Keywords: UBE2J1, Dengue virus, Interferons, IRF3, K48 ubiquitination Background antiviral responses [3]. IFN-α/β regulates the synthesis Dengue virus (DENV), transmitted by Aedes aegypti and of antiviral proteins and immunoregulatory factors Aedes albopicuts, causes an emerging tropical disease through the JAK/STAT signaling pathway [4, 5].
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • A Drosophila Ortholog of the Human Cylindromatosis Tumor Suppressor
    RESEARCH ARTICLE 2605 Development 134, 2605-2614 (2007) doi:10.1242/dev.02859 A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense Theodore Tsichritzis1, Peer C. Gaentzsch3, Stylianos Kosmidis2, Anthony E. Brown3, Efthimios M. Skoulakis2, Petros Ligoxygakis3,* and George Mosialos1,4,* The cylindromatosis (CYLD) gene is mutated in human tumors of skin appendages. It encodes a deubiquitylating enzyme (CYLD) that is a negative regulator of the NF-␬B and JNK signaling pathways, in vitro. However, the tissue-specific function and regulation of CYLD in vivo are poorly understood. We established a genetically tractable animal model to initiate a systematic investigation of these issues by characterizing an ortholog of CYLD in Drosophila. Drosophila CYLD is broadly expressed during development and, in adult animals, is localized in the fat body, ovaries, testes, digestive tract and specific areas of the nervous system. We demonstrate that the protein product of Drosophila CYLD (CYLD), like its mammalian counterpart, is a deubiquitylating enzyme. Impairment of CYLD expression is associated with altered fat body morphology in adult flies, increased triglyceride levels and increased survival under starvation conditions. Furthermore, flies with compromised CYLD expression exhibited reduced resistance to bacterial infections. All mutant phenotypes described were reversible upon conditional expression of CYLD transgenes. Our results implicate CYLD in a broad range of functions associated with fat homeostasis and host defence in Drosophila. KEY WORDS: Cylindromatosis, Drosophila, Fat body, Host defense, NF-kappaB INTRODUCTION disease and it is required for the proper development of T Familial cylindromatosis is an autosomal-dominant predisposition lymphocytes in mice (Costello et al., 2005; Reiley et al., 2006).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Material Data Sheet
    MATERIAL DATA SHEET Recombinant Human His6 UBE2N/UBE2V2 Complex Cat. # E2­666 Ubiquitin conjugating Enzyme E2N (UBE2N), also known as Ubiquitin conjugating Enzyme 13 (Ubc13), forms a functional complex with the catalytically inactive UBE2V2 (human homologue of yeast MMS2) protein (1). Human UBE2N/Ubc13 shares 100% and 99% amino acid (aa) sequence identity with the mouse and rat orthologs, respectively, while human UBE2V2 shares 99% aa sequence identity with its mouse and rat orthologs. The UBE2N/UBE2V2 Complex functions with Ubiquitin ligases (E3s), including RNF111 and RNF8, to synthesize Lys63­linked Ubiquitin chains (2,3) that can either be unanchored or attached to target proteins (4, 5). The UBE2N/UBE2V2 complex has important roles in facilitating responses to various forms of DNA damage (2, 6). Product Information Quantity: 100 µg | 50 µg MW: 18 kDa (UBE2N), 17 kDa (UBE2V2) Source: E. coli­derived Contains an N­terminal 6­His tag Accession # P61088 (UBE2N)/Q15819 (UBE2V2) Stock: 0.88 mg/ml (25 μM) in 50 mM HEPES pH 7.5, 200 mM NaCl, 10% Glycerol (v/v), 2 mM TCEP Purity: >95%, by SDS­PAGE under reducing conditions and visualized by Colloidal Coomassie® Blue stain. Rev. 5/22/2014 Page 1 of 2 www.bostonbiochem.com Boston Biochem products are available via the R&D Systems distributor network. USA & CANADA Tel: (800) 343-7475 EUROPE Tel: +44 (0)1235 529449 CHINA Tel: +86 (21) 52380373 Use & Storage Use: Recombinant Human His6­UBE2N/UBE2V2 Complex is a member of the Ubiquitin conjugating (E2) enzyme family that receives Ubiquitin from a Ubiquitin activating (E1) enzyme and subsequently interacts with a Ubiquitin ligase (E3) to conjugate Ubiquitin to substrate proteins.
    [Show full text]
  • The Ubiquitination Enzymes of Leishmania Mexicana
    The ubiquitination enzymes of Leishmania mexicana Rebecca Jayne Burge Doctor of Philosophy University of York Biology October 2020 Abstract Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. Although 20 deubiquitinating enzymes (DUBs) have been partially characterised in Leishmania mexicana, little is known about the role of E1 ubiquitin-activating (E1), E2 ubiquitin- conjugating (E2) and E3 ubiquitin ligase (E3) enzymes in this parasite. Using bioinformatic methods, 2 E1, 13 E2 and 79 E3 genes were identified in the L. mexicana genome. Subsequently, bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed that the E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for successful promastigote to amastigote differentiation and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, revealed a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a was found to load ubiquitin onto UBC2, allowing UBC2- UEV1 to form K63-linked di-ubiquitin chains in vitro. UBC2 was also shown to cooperate with human E3s RNF8 and BIRC2 in vitro to form non-K63-linked polyubiquitin chains, but association of UBC2 with UEV1 inhibits this ability.
    [Show full text]
  • Supplementary Tables
    Supplementary Tables Supplementary Table S1: Preselected miRNAs used in feature selection Univariate Cox proportional hazards regression analysis of the endpoint freedom from recurrence in the training set (DKTK-ROG sample) allowed the pre-selection of 524 miRNAs (P< 0.5), which were used in the feature selection. P-value was derived from log-rank test. miRNA p-value miRNA p-value miRNA p-value miRNA p-value hsa-let-7g-3p 0.0001520 hsa-miR-1304-3p 0.0490161 hsa-miR-7108-5p 0.1263245 hsa-miR-6865-5p 0.2073121 hsa-miR-6825-3p 0.0004257 hsa-miR-4298 0.0506194 hsa-miR-4453 0.1270967 hsa-miR-6893-5p 0.2120664 hsa-miR-668-3p 0.0005188 hsa-miR-484 0.0518625 hsa-miR-200a-5p 0.1276345 hsa-miR-25-3p 0.2123829 hsa-miR-3622b-3p 0.0005885 hsa-miR-6851-3p 0.0531446 hsa-miR-6090 0.1278692 hsa-miR-3189-5p 0.2136060 hsa-miR-6885-3p 0.0006452 hsa-miR-1276 0.0557418 hsa-miR-148b-3p 0.1279811 hsa-miR-6073 0.2139702 hsa-miR-6875-3p 0.0008188 hsa-miR-3173-3p 0.0559962 hsa-miR-4425 0.1288330 hsa-miR-765 0.2141536 hsa-miR-487b-5p 0.0011381 hsa-miR-650 0.0564616 hsa-miR-6798-3p 0.1293342 hsa-miR-338-5p 0.2153079 hsa-miR-210-5p 0.0012316 hsa-miR-6133 0.0571407 hsa-miR-4472 0.1300006 hsa-miR-6806-5p 0.2173515 hsa-miR-1470 0.0012822 hsa-miR-4701-5p 0.0571720 hsa-miR-4465 0.1304841 hsa-miR-98-5p 0.2184947 hsa-miR-6890-3p 0.0016539 hsa-miR-202-3p 0.0575741 hsa-miR-514b-5p 0.1308790 hsa-miR-500a-3p 0.2185577 hsa-miR-6511b-3p 0.0017165 hsa-miR-4733-5p 0.0616138 hsa-miR-378c 0.1317442 hsa-miR-4515 0.2187539 hsa-miR-7109-3p 0.0021381 hsa-miR-595 0.0629350 hsa-miR-3121-3p
    [Show full text]
  • RNF11 at the Crossroads of Protein Ubiquitination
    biomolecules Review RNF11 at the Crossroads of Protein Ubiquitination Anna Mattioni, Luisa Castagnoli and Elena Santonico * Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; [email protected] (A.M.); [email protected] (L.C.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 8 November 2020; Published: 11 November 2020 Abstract: RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis. Keywords: Ring Finger Protein 11; HECT ligases; ubiquitination 1.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Monoclonal Anti-Human Adipon
    monocl AAD0602 Monoclonal anti-adiponectin antibody (clone 1G12) 100ul 311-Eur ATGen onal monocl AAD0602 Monoclonal anti-adiponectin antibody (clone 1G12) 50ul 227-Eur ATGen onal monocl AAD0614 Monoclonal anti-human adiponectin antibody (clone 5H7) 100ul 311-Eur ATGen onal monocl AAD0614 Monoclonal anti-human adiponectin antibody (clone 5H7) 50ul 227-Eur ATGen onal monocl AAK0604 Monoclonal anti-human AK3 antibody (clone SJB3-36) 100ul 354-Eur ATGen onal monocl AAK0604 Monoclonal anti-human AK3 antibody (clone SJB3-36) 50ul 252-Eur ATGen onal monocl AAP0501 Monoclonal anti-human ANGPTL3 antibody (clone 1D10 ) 100ul 284-Eur ATGen onal monocl AAP0501 Monoclonal anti-human ANGPTL3 antibody (clone 1D10 ) 50ul 191-Eur ATGen onal monocl AAP0501 Monoclonal anti-human ANGPTL3 antibody (clone 1D10) 100ul 311-Eur ATGen onal monocl AAP0501 Monoclonal anti-human ANGPTL3 antibody (clone 1D10) 50ul 227-Eur ATGen onal monocl AAP0836 Monoclonal anti-human APP antibody (clone J4H9) 100ul 311-Eur ATGen onal monocl AAP0836 Monoclonal anti-human APP antibody (clone J4H9) 50ul 227-Eur ATGen onal monocl ABH0708 Monoclonal anti-human BHMT antibody (clone 3D6 ) 100ul 284-Eur ATGen onal monocl ABH0708 Monoclonal anti-human BHMT antibody (clone 3D6 ) 50ul 191-Eur ATGen onal monocl ABH0708 Monoclonal anti-human BHMT antibody (clone 3D6) 100ul 311-Eur ATGen onal monocl ABH0708 Monoclonal anti-human BHMT antibody (clone 3D6) 50ul 227-Eur ATGen onal monocl ABI0923 Monoclonal anti-human BID antibody (clone 4D3) 100ul 284-Eur ATGen onal monocl ABI0923 Monoclonal anti-human
    [Show full text]