The Center for Integrative Genomics Report 2005–2006

Total Page:16

File Type:pdf, Size:1020Kb

The Center for Integrative Genomics Report 2005–2006 The Center for integrative genomics Report 2005–2006 $FOUSFJOUÏHSBUJG EFHÏOPNJRVF Index PRESENTATION Director’s message 4 Scientific advisory committee 6 Organigram of the CIG 7 RESEARCH The structure and function of genomes and their evolution Alexandre reymond – Genome structure and expression 10 Henrik Kaessmann – Evolutionary genomics 12 Victor Jongeneel – Cancer genomics 14 The regulation of gene expression Nouria hernandez – Mechanisms of transcription regulation 16 Winship herr – Regulation of cell proliferation 18 Christian Fankhauser – Light–regulated development in plants 20 The genomics of complex functions Mehdi tafti – Genetics of sleep and the sleep EEG 22 Paul Franken – Genetics and energetics of sleep homeostasis and circadian rythms 24 Walter Wahli – Peroxisome Proliferator–Activated Receptors (PPARs) as regulators of metabolic and tissue repair processes 26 Béatrice Desvergne – PPARbeta and fine tuning of cell fate decision 30 Liliane Michalik – Roles of PPARs in skin biology and angiogenesis 34 Bernard thorens – Molecular and physiological analysis of energy homeostasis in health and disease 36 CORE fACILITIES Core facilities of the CIG 39 DNA array facility – DAF 40 Protein analysis facility – PAF 42 Core facilities associated with the CIG 44 EdUCATION Lectures and courses 48 Seminars at the CIG 51 CIG retreat 56 The CIG & the public 56 FUNDING (ACKNOwlEDGEMENTS) 58 PEOplE 59 CIG Timeline CIG Timeline Inauguration of the Pro- tein Analysis Facility (PAF – December 2002) Inauguration of the DNA Array Facility (DAF – March 2003) Arrival of Prof. Kaessmann (September 2003) Installation Arrival of of Vital–IT Prof. Thorens in the Génopode (October 2003) Arrival of Inauguration of the Prof. Hernandez The construction of Prof. Hernandez, Cellular Imaging Facility becomes the second the big animal facility Herr and Tafti at the Génopode CIG director is rejected by popular (September 2004) referendum Arrival of Arrival of Arrival Arrival Inauguration First CIG retreat Prof. Reymond Prof. Fankhauser of Dr. Franken of Prof. Desvergne, of the CIG in Saas Fee (October 2004) Wahli and Dr. Michalik 01 02 03 04 05 06 07 08 09 10 11 12 2003 2004 2005 2 CIG 2005/2006 Installation HeLa in the «Journées de «passeports vacances» Lectures Inauguration of the hall of the Génopode la recherche en (July and August) «continuing Center for Investigation (until December 2006) génétique» education» and Research on Sleep (CIRS) UNIL Second CIG Installation of the Mouse open house days retreat in Metabolic Evaluation Saas Fee Facility (MEF) 01 02 03 04 05 06 07 08 09 10 11 12 2007 2006 3 Presentation | Message from the Director Message from the Director WE ARE IN THE MIDST OF A first Faculty of Biology and Medicine in Switzerland. It also resulted in her knowledge of mouse work to help in the design of the CIG ani- REVOLUtiON IN THE BIOLOgicAL the creation of two research axes, one focused on functional genomics mal house. The renovation was officially completed in May 2005, and SciENCES. and the other on human and social sciences. the last group to move in, that of Bernard Thorens, arrived in October 2005, just in time for the inauguration! This revolution, started with the sequen- What form the functional genomics axis of the SVS program would cing of the human genome and then that take was of great interest to W. Wahli (UNIL) and D. Duboule (UNIGE) After several years of relentless work to see the CIG evolve from an of a number of other organisms, conti- who composed, as early as 1999, a first document describing a “Swiss idea, formulated in early 1999, to a reality, Walter Wahli resigned as nues with the spectacular development of Center of Genetics/Genomics”. The missions of this proposed center CIG Director as of September 2005, having decided, I think, that it was technologies that allow the interrogation included cutting–edge research and teaching in genomics, data collec- time for the CIG to “fly with its own wings”, and that it was time for of thousands of molecules in one experiment. We can now not only tion and analysis, the development of core facilities, the development him to go back to teaching and research. We at the CIG are all indeb- compare the genome structures of, for example, a normal cell and a of interactions between fundamental and biomedical research, and the ted to Walter and it is fitting that he be thanked here, in this first bien- cancer cell, but also the expression pattern of an entire genome in dif- facilitation of technology transfer, an ambitious set of goals indeed! nial report of CIG, for having devoted so much effort and energy to the ferent cells, at different times, and under different conditions. Any mo- development of this very unique center! And on my part, I thank him lecule of interest can be analyzed in such a global manner, from mRNAs, In the following year, the project was further studied by two com- for having helped immensely the next CIG director learn the ropes! small RNAs, and proteins to metabolites and other compounds. The mittees, the “groupe de réflexion stratégique lausannois” on the one techniques that allow these types of experiments are powerful, but hand, and a group of three people representing the three SVS pro- The CIG inauguration was closely followed by the success of the popu- they offer a challenge to the individual research laboratory: they rely gram institutions and charged with developing its genomic aspect on lar referendum against the construction of a large animal house, the on costly instruments, unaffordable for the typical research group, and the other hand. These documents already mentioned the Center by its last piece of the CIG project, that was to be built underground on the on highly specialized know–how, and this not only for the generation present name, the Center for Integrative Genomics, and mentioned its south side of the Génopode. This was indeed a depressing moment for of the data but also for their analysis. location in the Pharmacy Building of the UNIL. The CIG was viewed the just inaugurated CIG and was to have profound long–term conse- as a place where genetic models then absent at the UNIL would be quences for the UNIL at large, all of which have yet to be fully grasped. It is in the context of this biological revolution that the Center for Inte- introduced, where bioinformatics would be developed, and where core One consequence was the impossibility for the CIG to develop further grative Genomics was created, a center combining research groups facilities would be established. The second document described the research using the mouse as an animal model, and another was the working on functional genomics with core facilities offering, not only CIG as a new type of structure, perhaps a foundation, co–owned by greatly increased difficulty to regroup basic research on the Dorigny to the Center itself but to the entire surrounding region, the latest tech- the three SVS members. campus. It is with these new elements that the CIG completed its first nologies in genome analyses. The Center was officially inaugurated on year in the Génopode. the 27th of October 2005. The inauguration was followed on the 28th In 2001, a final report was presented to the Rectorate of the UNIL by a by the inaugural CIG Symposium “Genomics, a new road for science group composed of professors from the Faculty of Sciences and from With all its groups now in a single building, the CIG could start taking and society”. These public events that marked the birth of the CIG the Faculty of Medicine. One of the important points of this report was care of recruiting new colleagues. One of the first undertakings was were the culmination of an enormous amount of work that involved the realization that the financing of the CIG, originally imagined as pro- the organization, in large part through the efforts of C. Fankhauser, many scientists in the Lemanic region. vided by the three SVS institutions, would in fact be provided by the A. Reymond, and B. Thorens, of a seminar series in which we invited a UNIL; this led to the eventual incorporation of the CIG into the UNIL as number of young people eligible to apply for a “professeur boursier” The conception of the CIG was intimately linked to the project “Sci- a department of its Faculty of Biology and Medicine. position to present their work and meet CIG faculty. A few months ence, Vie, Société” (SVS), in which, in an unprecedented collaborative after this recruitment effort, a second recruitment was launched to fill effort, the Universities of Lausanne (UNIL) and Geneva (UNIGE), and In 2002, Walter Wahli was appointed the founding director of the CIG, our last CIG faculty position. The recruiting committee included profes- the EPFL (Ecole Polytechnique Fédérale de Lausanne) agreed to redis- and in Autumn 2004, work started in the building now known as the sors S. Antonarakis (UNIGE), M. Swartz (EPFL), J. Beckmann, L. Keller, tribute some of their competences to avoid redundancies and optimize Génopode to prepare it for the move of the first CIG groups. Several P. Moreillon, J. Tschopp, and myself, as well as M. Haenni who re- the use of resources. The SVS project was developed in the years 2000 people gave a lot of their time to the transformation of the Pharma- presented the “corps intermédiaire” and L. Baratali who represented and 2001 and resulted in the transfer of the UNIL sections of Che- cy Building into the Génopode, in particular Liliane Michalik, the de- the students (all UNIL). The committee was presided by I. Stamenko- mistry, Mathematics, and Physics to the EPFL, in the fusion of the UNIL legate of the Rectorate to the renovation of the building, who worked vic (UNIL).
Recommended publications
  • Gastronauts Symposium Booklet
    DUKE / DUKE-NUSDUKE / DUKE-NUS GASTRONAUTSGASTRONAUTS SINGAPORESINGAPORE A GLOBAL SYMPOSIUMA GLOBAL ON GUT-BRAIN SYMPOSIUM MATTERS ON GUT-BRAIN MATTERS 3 - 4 MAY 20183 - 4 MAY 2018 CONTENTS 03 Message from Co-Chairs 04 Symposium Highlights 08 SESSION ONE Session Chair: Diego Bohórquez Speaker 1.1 Raphael H. Valdivia Speaker 1.2 Jonathan Kotula Speaker 1.3 Xiuqin Zhang Speaker 1.4 Matthew Chang 14 SESSION TWO Session Chair: Irene Miguel-Aliaga Speaker 2.1 Feifan Guo Speaker 2.2 Walter Wahli Speaker 2.3 Paul M Yen Speaker 2.4 Greg S. B. Suh 20 DISCUSSION Chair: Pae Wu Iain Dickson Jermont Chen Justin Gallivan Robert Kokoska 21 SESSION THREE Session Chair: Xiling Shen Speaker 3.1 John Furness Speaker 3.2 Arthur Beyder Speaker 3.3 Nicholas Spencer Speaker 3.4 Sven Pettersson CONTENTS 27 SESSION FOUR Session Chair: Raphael H. Valdivia Speaker 4.1 Nick Barker Speaker 4.2 Xiling Shen Speaker 4.3 Hyunsoo Shawn Je Speaker 4.4 Maxime M. Mahe 33 SESSION FIVE Session Chair: Nicholas Spencer Speaker 5.1 Lawrence Carin Speaker 5.2 John Doyle Speaker 5.3 Warren Grill 38 SESSION SIX Session Chair: Arthur Beyder Speaker 6.1 Karl Herrup Speaker 6.2 David L. Silver Speaker 6.3 Rodger A. Liddle 43 SESSION SEVEN Session Chair: John Furness Speaker 7.1 Diego Bohórquez Speaker 7.2 Luis R. Saraiva Speaker 7.3 Irene Miguel-Aliaga Speaker 7.4 Ivan de Araujo MESSAGE FROM CO-CHAIRS Dear Gastronauts, On behalf of the organising committee, we are thrilled to welcome you to Singapore: A place known for its cultural tapestry Diego Bohórquez Assistant Professor of Medicine and where people from around the globe and Neurobiology Duke University come to imagine new possibilities.
    [Show full text]
  • Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver
    H OH metabolites OH Review Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver Blandine Tramunt 1,2, Alexandra Montagner 1, Nguan Soon Tan 3 , Pierre Gourdy 1,2 , Hervé Rémignon 4,5 and Walter Wahli 3,5,6,* 1 Institut des Maladies Métaboliques et Cardiovasculaires (I2MC-UMR1297), INSERM/UPS, Université de Toulouse, F-31432 Toulouse, France; [email protected] (B.T.); [email protected] (A.M.); [email protected] (P.G.) 2 Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, F-31059 Toulouse, France 3 Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore; [email protected] 4 INP-ENSAT, Université de Toulouse, F-31320 Castanet-Tolosan, France; [email protected] 5 Toxalim Research Center in Food Toxicology (UMR 1331), INRAE, National Veterinary College of Toulouse (ENVT), Purpan College of Engineers of the Institut National Polytechnique de Toulouse (INP-PURPAN), Université Toulouse III—Paul Sabatier (UPS), Université de Toulouse, F-31300 Toulouse, France 6 Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland * Correspondence: [email protected] Abstract: The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver partici- pates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the Citation: Tramunt, B.; Montagner, A.; control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) Tan, N.S.; Gourdy, P.; Rémignon, H.; or the cell membrane (GPER1).
    [Show full text]
  • Glucocorticoid Receptor-Ppara Axis in Fetal Mouse Liver Prepares
    RESEARCH ARTICLE Glucocorticoid receptor-PPARa axis in fetal mouse liver prepares neonates for milk lipid catabolism Gianpaolo Rando1†, Chek Kun Tan2†, Nourhe` ne Khaled1, Alexandra Montagner3, Nicolas Leuenberger1, Justine Bertrand-Michel4, Eeswari Paramalingam2, Herve´ Guillou3, Walter Wahli1,2,3* 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; 2Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; 3UMR 1331 ToxAlim Research Centre in Food Toxicology, INRA, Universite´ de Toulouse, Toulouse, France; 4IFR 150 Plateforme Metatoul, Institut Fe´de´ratif de Recherche Bio-Me´dicale de Toulouse INSERM U563, Toulouse, France Abstract In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARa, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARa axis in which GR directly regulates the transcriptional activation of PPARa by binding to its promoter. Certain PPARa target genes such as Fgf21 remain repressed in the fetal liver and become PPARa responsive after birth following an epigenetic switch triggered by b-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes *For correspondence: walter. the activity of PPARa in anticipation of the sudden shifts in postnatal nutrient source and metabolic [email protected] demands. DOI: 10.7554/eLife.11853.001 †These authors contributed equally to this work Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Ppars and Microbiota in Skeletal Muscle Health and Wasting
    International Journal of Molecular Sciences Review PPARs and Microbiota in Skeletal Muscle Health and Wasting Ravikumar Manickam 1 , Kalina Duszka 2 and Walter Wahli 3,4,5,* 1 Department of Pharmaceutical Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; [email protected] 2 Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected] 3 Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland 4 Toxalim, INRAE, Chemin de Tournefeuille 180, F-31027 Toulouse, France 5 Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore * Correspondence: [email protected] Received: 18 October 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Skeletal muscle is a major metabolic organ that uses mostly glucose and lipids for energy production and has the capacity to remodel itself in response to exercise and fasting. Skeletal muscle wasting occurs in many diseases and during aging. Muscle wasting is often accompanied by chronic low-grade inflammation associated to inter- and intra-muscular fat deposition. During aging, muscle wasting is advanced due to increased movement disorders, as a result of restricted physical exercise, frailty, and the pain associated with arthritis. Muscle atrophy is characterized by increased protein degradation, where the ubiquitin-proteasomal and autophagy-lysosomal pathways, atrogenes, and growth factor signaling all play an important role. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of transcription factors, which are activated by fatty acids and their derivatives.
    [Show full text]
  • Glucocorticoid Receptor-PPAR Alpha Axis in Fetal Mouse Liver Prepares
    Glucocorticoid receptor-PPAR alpha axis in fetal mouse liver prepares neonates for milk lipid catabolism Gianpaolo Rando, Chek Kun Tan, Nourhène Khaled, Alexandra Montagner, Nicolas Leuenberger, Justine Bertrand-Michel, Eeswari Paramalingam, Hervé Guillou, Walter Wahli To cite this version: Gianpaolo Rando, Chek Kun Tan, Nourhène Khaled, Alexandra Montagner, Nicolas Leuenberger, et al.. Glucocorticoid receptor-PPAR alpha axis in fetal mouse liver prepares neonates for milk lipid catabolism. eLife, eLife Sciences Publication, 2016, 5, 31 p. 10.7554/eLife.11853. hal-01602433 HAL Id: hal-01602433 https://hal.archives-ouvertes.fr/hal-01602433 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Glucocorticoid receptor-PPARa axis in fetal mouse liver prepares neonates for milk lipid catabolism Gianpaolo Rando1†, Chek Kun Tan2†, Nourhe` ne Khaled1, Alexandra Montagner3, Nicolas Leuenberger1, Justine Bertrand-Michel4, Eeswari Paramalingam2, Herve´
    [Show full text]
  • Walter Wahli, Metabolomics 2017, 7:2(Suppl) Conferenceseries.Com
    Walter Wahli, Metabolomics 2017, 7:2(Suppl) conferenceseries.com http://dx.doi.org/10.4172/2153-0769-C1-036 8th International Conference and Exhibition on Metabolomics & Systems Biology May 08-10, 2017 Singapore Walter Wahli Nanyang Technological University, Singapore PPARα in hepatocytes integrates microbiome-derived signals and is protective against fatty liver in both neonate and adult mice he liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Germ-free mice Tdisplay altered daily oscillation of clock gene expression with a change in the expression of clock output regulators. These alterations in microbiome-sensitive gene expression are associated with daily alterations in lipid, glucose and xenobiotic metabolism as revealed by hepatic metabolome analyses. Hepatic lipid catabolism is essential for the newborns to use milk fat as an energy source. PPARα in hepatocytes is critical for this function. PPARα expression is stimulated a few days before birth, which prepares the receptor for its physiological role in harnessing milk lipids after birth. This mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly binds to the Pparα promoter to stimulate its activity. In turn, under the control of PPARα, the expression of genes required for lipid catabolism is enhanced before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. Interestingly, the PPARα target gene Fgf21 is not stimulated in the fetal liver and responds to PPARα only after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of histone deacetylase 3.
    [Show full text]
  • Pparβ/Δ Affects Pancreatic Β Cell Mass and Insulin Secretion in Mice
    Research article PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice José Iglesias,1,2 Sebastian Barg,3,4 David Vallois,1 Shawon Lahiri,1 Catherine Roger,1 Akadiri Yessoufou,1 Sylvain Pradevand,1 Angela McDonald,4 Claire Bonal,5 Frank Reimann,6 Fiona Gribble,6 Marie-Bernard Debril,1 Daniel Metzger,7 Pierre Chambon,7 Pedro Herrera,5 Guy A. Rutter,4 Marc Prentki,2 Bernard Thorens,1 and Walter Wahli1 1Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland. 2Montreal Diabetes Research Center and University of Montreal Hospital Research Centre (CRCHUM), and Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada. 3Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden. 4Section of Cell Biology, Division of Medicine, Imperial College London, London, United Kingdom. 5Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland. 6Cambridge Institute for Medical Research, Cambridge, United Kingdom. 7Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM 964, Université de Strasbourg, Illkirch, France. PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive func- tion of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton.
    [Show full text]
  • Analysis of the Peroxisome Proliferator-Activated Receptor-Β/Δ
    Khozoie et al. BMC Genomics 2012, 13:665 http://www.biomedcentral.com/1471-2164/13/665 RESEARCH ARTICLE Open Access Analysis of the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) cistrome reveals novel co-regulatory role of ATF4 Combiz Khozoie1, Michael G Borland1,4, Bokai Zhu1, Songjoon Baek2, Sam John2,5, Gordon L Hager2, Yatrik M Shah3,6, Frank J Gonzalez3 and Jeffrey M Peters1* Abstract Background: The present study coupled expression profiling with chromatin immunoprecipitation sequencing (ChIP-seq) to examine peroxisome proliferator-activated receptor-β/δ (PPARβ/δ)-dependent regulation of gene expression in mouse keratinocytes, a cell type that expresses PPARβ/δ in high concentration. Results: Microarray analysis elucidated eight different types of regulation that modulated PPARβ/δ-dependent gene expression of 612 genes ranging from repression or activation without an exogenous ligand, repression or activation with an exogenous ligand, or a combination of these effects. Bioinformatic analysis of ChIP-seq data demonstrated promoter occupancy of PPARβ/δ for some of these genes, and also identified the presence of other transcription factor binding sites in close proximity to PPARβ/δ bound to chromatin. For some types of regulation, ATF4 is required for ligand-dependent induction of PPARβ/δ target genes. Conclusions: PPARβ/δ regulates constitutive expression of genes in keratinocytes, thus suggesting the presence of one or more endogenous ligands. The diversity in the types of gene regulation carried out by PPARβ/δ is consistent with dynamic binding and interactions with chromatin and indicates the presence of complex regulatory networks in cells expressing high levels of this nuclear receptor such as keratinocytes.
    [Show full text]
  • PPAR Modulates Long Chain Fatty Acid Processing in the Intestinal
    International Journal of Molecular Sciences Article PPARγ Modulates Long Chain Fatty Acid Processing in the Intestinal Epithelium Kalina Duszka 1,2,3 ID , Matej Oresic 4, Cedric Le May 5, Jürgen König 3,6 ID and Walter Wahli 1,2,7,* ID 1 Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore; [email protected] 2 Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland 3 Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; [email protected] 4 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykisokatu 6, 20520 Turku, Finland; matej.oresic@utu.fi 5 Institut du Thorax, INSERM, CNRS, UNIV Nantes, 44007 Nantes, France; [email protected] 6 Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 7 ToxAlim, Research Center in Food Toxicology, National Institute for Agricultural Research (INRA), 180 Chemin de Tournefeuille, 31300 Toulouse, France * Correspondence: [email protected]; Tel.: +65-6592-3927 or +65-9026-6430 Received: 7 November 2017; Accepted: 27 November 2017; Published: 28 November 2017 Abstract: Nuclear receptor PPARγ affects lipid metabolism in several tissues, but its role in intestinal lipid metabolism has not been explored. As alterations have been observed in the plasma lipid profile of ad libitum fed intestinal epithelium-specific PPARγ knockout mice (iePPARγKO), we submitted these mice to lipid gavage challenges. Within hours after gavage with long chain unsaturated fatty acid (FA)-rich canola oil, the iePPARγKO mice had higher plasma free FA levels and lower gastric inhibitory polypeptide levels than their wild-type (WT) littermates, and altered expression of incretin genes and lipid metabolism-associated genes in the intestinal epithelium.
    [Show full text]
  • Liver PPAR Is Crucial for Whole-Body Fatty Acid Homeostasis and Is
    Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD Alexandra Montagner, Arnaud Polizzi, Edwin Fouché, Simon Ducheix, Yannick Lippi, Frédéric Lasserre, Valentin Barquissau, Marion Régnier, Céline Lukowicz, Fadila Benhamed, et al. To cite this version: Alexandra Montagner, Arnaud Polizzi, Edwin Fouché, Simon Ducheix, Yannick Lippi, et al.. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut, BMJ Publishing Group, 2016, 65 (7), pp.1202-1214. 10.1136/gutjnl-2015-310798. inserm-02339685 HAL Id: inserm-02339685 https://www.hal.inserm.fr/inserm-02339685 Submitted on 30 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hepatology ORIGINAL ARTICLE Liver PPARα is crucial for whole-body fatty acid Gut: first published as 10.1136/gutjnl-2015-310798 on 1 February 2016. Downloaded from homeostasis and is protective against NAFLD Alexandra Montagner,1 Arnaud Polizzi,1 Edwin Fouché,1 Simon Ducheix,1 Yannick Lippi,1 Frédéric Lasserre,1 Valentin Barquissau,2,3 Marion Régnier,1 Céline Lukowicz,1 Fadila Benhamed,4,5,6 Alison Iroz,4,5,6 Justine Bertrand-Michel,2,3 Talal Al Saati,7 Patricia Cano,1 Laila Mselli-Lakhal,1 Gilles Mithieux,8 Fabienne Rajas,8 Sandrine Lagarrigue,9,10,11 Thierry Pineau,1 Nicolas Loiseau,1 Catherine Postic,4,5,6 Dominique Langin,2,3,12 Walter Wahli,1,13,14 Hervé Guillou1 ▸ Additional material is ABSTRACT published online only.
    [Show full text]
  • Table of Contents Introduction 2 the CIG at a Glance 2 the CIG Scientific Advisory Committee 3 Message from the Director 4 Highlights 5
    Table of Contents INTRODUCTION 2 The CIG at a glance 2 The CIG Scientific Advisory Committee 3 Message from the Director 4 Highlights 5 RESEARCH 6 Richard Benton Chemosensory perception and evolution in insects 8 Béatrice Desvergne Networking activity of nuclear receptors during development and in adult metabolic homeostasis 10 Christian Fankhauser Light regulation of plant growth and development 12 Paul Franken Genetics and energetics of sleep homeostasis and circadian rhythms 14 David Gatfield Molecular mechanisms of circadian gene expression 16 Nouria Hernandez Synthesis of non-coding RNAs by RNA polymerases II and III: mechanisms of transcription regulation 18 Winship Herr Molecular epigenetics 20 Henrik Kaessmann Functional evolutionary genomics in mammals 22 Liliane Michalik Molecular control of skin homeostasis 24 Alexandre Reymond Genome structure and expression 26 Andrzej Stasiak Functional transitions of DNA structure 28 Mehdi Tafti Genetics of sleep and sleep disorders 30 Bernard Thorens Physiological genomics of energy homeostasis 32 Walter Wahli The multifaceted roles of PPARs and micronutrients in health and disease 34 Other groups at the Génopode 36 CORE FACILITIES 40 Genomic Technologies Facility (GTF) 42 Protein Analysis Facility (PAF) 44 Core facilities associated with the CIG 46 EDUCATION 48 Courses and lectures given by CIG members 50 Doing a PhD or a Postdoc at the CIG 51 Symposia and seminars 52 The CIG and the public 56 PEOPLE 58 1 Introduction THE CENTER for INTEgratiVE GEnomics (CIG) at A glanCE The Center for Integrative Genomics (CIG) is a department of the Faculty of Biology and Medicine (FBM) of the University of Laus- anne (UNIL). Its main missions are to pursue cutting edge research, to deliver the highest quality teaching to students, and to inform the public at large.
    [Show full text]
  • Agonism Upregulates Forkhead Box A2 to Reduce
    PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle Wendy Wen Ting Phan, Wei Ren Tan, Yun Yip, Ivan Dongzheng Hew, Jonathan Kiat Wee, Hong Cheng, Melvin Khee Shing Leow, Walter Wahli, Nguan Tan To cite this version: Wendy Wen Ting Phan, Wei Ren Tan, Yun Yip, Ivan Dongzheng Hew, Jonathan Kiat Wee, et al.. PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 My- oblasts and in Skeletal Muscle. International Journal of Molecular Sciences, MDPI, 2020, 21 (5), 10.3390/ijms21051747. hal-02618164 HAL Id: hal-02618164 https://hal.inrae.fr/hal-02618164 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Molecular Sciences Article PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle Wendy Wen Ting Phua 1,2, Wei Ren Tan 3, Yun Sheng Yip 1, Ivan Dongzheng Hew 1, Jonathan Wei Kiat Wee 1, Hong Sheng Cheng 1
    [Show full text]