Effect of Biofuel Impurities on the Diesel Oxidation Catalyst
Total Page:16
File Type:pdf, Size:1020Kb
Liene KIENKAS Effect of Biofuel Impurities on the Diesel Oxidation Catalyst Degree Project Supervisors: PhD student. J. GRANESTRAND PhD, development engineer R. SUÁREZ PARÍS Examiner: L. J. PETTERSSON Stockholm – 2017 ANOTĀCIJA DĪZEĻDEGVIELAS OKSIDĒŠANAS KATALIZATORS, KATALIZATORA SAINDĒŠANA, FOSFORS, NĀTRIJS, KALCIJS, MATERIĀLU RAKSTUROŠANA, AKTIVITĀTES TESTĒŠANA Literatūras apskatā ir izskaidrota dīzeļdegvielas oksidēšanas katalizatora uzbūve un tā aktīvās fāzes struktūra. Ir aprakstīta katalizatora deaktivēšana saindēšanas dēļ, detalizētāk aprakstot fosfora, nātrija, kalcija un sēra mijiedarbību ar dīzeļdegvielas oksidēšanas katalizatoru. Ir apkopotas saindēšanas simulēšanas, aktivitātes testēšanas un materiālu raksturošanas metodes, kas tiek izmantotas katalizatoru pētījumos. Metodiskā daļā tiek aprakstīta jauna PtPd/Al2O3 katalizatora sagatavošana ar slapjo impregnēšanas metodi. Ir aprakstīta metode katalizatora saindēšanai ar fosforu, kalciju un nātriju un monolītu pārklājumu uznešanas tehnika. Tiek izklāstītas materiālu raksturošanas metodes (BET, ICP-OES, CO hemisorbcija, TPR, SEM-EDS, TEM-EDS, XRD) un to nozīme sagatavotā materiāla raksturošanā. Šī darba daļa iekļauj arī aktivitātes testēšanas reaktora sagatavošanu, metodes izstrādi un reakcijām izmantoto apstākļu aprakstu. Eksperimentālajā daļā tiek salīdzinātas jauna un saindētu katalizatoru materiālu īpašības un to veiktspēja aktivitātes testos. Elementu sastāvs materiālos ir noteikts ar ICP- OES monolītu paraugiem pirms un pēc sēra iedarbības. Saindēšanas laikā notikušās īpatnējās virsmas laukuma un cēlmetālu dispersijas izmaiņas ir noteiktas un salīdzinātas. Izmantojot temperatūras programmētu reducēšanu ar ūdeņradi, ir izstrādāta metode inžu-substrāta un inžu-aktīvās fāzes mijiedarbību pētīšanai un izskaidrošanai. Aktīvās fāzes morfoloģija un nanodaļiņu izmēri ir noteikti ar TEM. Inžu koncentrācijas un izkliede katalizatora substrātā ir noteikta ar SEM. Aktīvās fāzes kristāliskās struktūras ir analizētas ar XRD. Ir veikti laboratorijas mēroga katalizatora aktivitātes testi. Slāpekļa (II) oksīda, oglekļa monoksīda un propilēna oksidēšanas reakcijas ir veiktas simulētā izplūdes gāzes plūsmā, atsevišķās reakcijās un pēc sēra iedarbības. 16 ‘konversijas pakāpes – temperatūras’ līknes ir iegūtas un analizētas katrai reakcijai. Jauna un saindēta katalizatora veiktspēja katrā reakcijā ir analizēta un izmaiņas skaidrotas, salīdzinot materiālu īpašības. Darbā izmantotas KTH Karaliskā Tehnoloģiju Institūta atbalstītās elektroniskās datu bāzes, internets un Scania ierobežotas pieejamības protokoli. Apskatītie literatūras avoti ir angļu un izdoti no 1922. līdz 2017. g. Maģistra darbs uzrakstīts angļu valodā, satur 93 lpp, 43 attēlus, 20 tabulas, 5 vienādojumus un 5 pielikumus, darbā izmantoti 99 literatūras avoti. 2 ANOTATION DIESEL OXIDATION CATALYST, POISONING, PHOSPHORUS, SODIUM, CALCIUM, MATERIAL CHARACTERIZATION, ACTIVITY TESTING A literature review covers the diesel oxidation catalyst design and its active phase structure. It describes catalyst deactivation due to poisoning. Phosphorus, sodium, calcium and sulphur interactions with the diesel oxidation catalyst are explained in detail. The review summarizes poisoning simulation, activity testing and material characterization techniques that have been developed over the years. The materials and methods section includes PtPd/Al2O3 catalyst preparation by incipient wetness impregnation. Catalyst poisoning with phosphorus, sodium and calcium in a liquid phase and subsequent monolith coating is described. Material characterization techniques (BET, ICP-OES, CO chemisorption, TPR, SEM-EDS, TEM-EDS, XRD) and their significance in the study are presented. Furthermore, this section covers catalyst activity testing equipment, development of testing method and the final set-up for activity tests. Fresh and poisoned catalyst materials and their performance are compared in the experimental section. The final material elemental composition is determined by ICP-OES for coated monolith samples before and after sulphur poisoning. The BET area and the precious metal dispersion changes during poisoning are determined and compared. Moreover, the temperature programmed reduction method is developed and poisonous species interactions with the support material and the precious metals explained. Active phase morphology, the size of particles and crystalline structure are characterized by TEM and XRD. Poisonous species distribution and loadings are determined by SEM. Laboratory scale activity tests are performed for fresh and poisoned catalysts. Nitric oxide, carbon monoxide and propylene oxidation is carried out in simulated exhaust, as single reactions and after sulphur treatment. 16 conversion versus temperature curves are obtained for each reaction. Fresh and poisoned catalyst performance is analysed in each reaction and explained by material characterization results. The literature was gathered from KTH Royal Institute of Technology supported electronic databases, internet resources and Scania internal reports. Reviewed literature sources are in English and have been published from 1922 to 2017. The Master thesis is written in English. It contains 93 pages, 43 figures, 20 tables, 5 equations, 5 appendices and 99 literature references. 3 ABBREVIATIONS DOC Diesel oxidation catalyst PtPd/Al2O3 γ-alumina supported bimetallic platinum and palladium oxidation catalyst Pt/Al2O3 γ-alumina supported monometallic platinum oxidation catalyst Pd/Al2O3 γ-alumina supported monometallic palladium oxidation catalyst TX Temperature for X % conversion of reactants F-Cat Fresh γ-alumina supported bimetallic platinum and palladium oxidation catalyst P-Cat Phosphorus poisoned γ-alumina supported bimetallic platinum and palladium oxidation catalyst Na-Cat Sodium poisoned γ-alumina supported bimetallic platinum and palladium oxidation catalyst Ca-Cat Calcium poisoned γ-alumina supported bimetallic platinum and palladium oxidation catalyst F-Al Fresh γ-alumina powder after the temperature treatment P-Al Phosphorus poisoned γ-alumina powder Na-Al Sodium poisoned γ-alumina powder Ca-Al Calcium poisoned γ-alumina powder Combo Activity test with fully simulated exhaust gas NO-Single Activity test with simulated exhaust gas excluding carbon monoxide and propylene CO-Single Activity test with simulated exhaust gas excluding nitric oxide and propylene C3H6-Single Activity test with simulated exhaust gas excluding carbon monoxide and nitric oxide Combo-T Activity test with fully simulated exhaust gas after aging Combo-SO2 Activity test with fully simulated exhaust gas after sulphur poisoning NO-F-Combo Nitric oxide oxidation with F-Cat in Combo CO-F-Combo Carbon monoxide oxidation with F-Cat in Combo C3H6-F-Combo Propylene oxidation with F-Cat in Combo NO-P-Combo Nitric oxide oxidation with P-Cat in Combo CO-P-Combo Carbon monoxide oxidation with P-Cat in Combo C3H6-P-Combo Propylene oxidation with P-Cat in Combo NO-Na-Combo Nitric oxide oxidation with Na-Cat in Combo CO-Na-Combo Carbon monoxide oxidation with Na-Cat in Combo C3H6-Na-Combo Propylene oxidation with Na-Cat in Combo NO-Ca-Combo Nitric oxide oxidation with Ca-Cat in Combo CO-Ca-Combo Carbon monoxide oxidation with Ca-Cat in Combo C3H6-Ca-Combo Propylene oxidation with Ca-Cat in Combo experiment NO-F-Single Nitric oxide oxidation with F-Cat in NO-Single CO-F-Single Carbon monoxide oxidation with F-Cat in CO-Single C3H6-F-Single Propylene oxidation with F-Cat in C3H6-Single 4 NO-P-Single Nitric oxide oxidation with P-Cat in NO-Single CO-P-Single Carbon monoxide oxidation with P-Cat in CO-Single C3H6-P-Single Propylene oxidation with P-Cat in C3H6-Single NO-Na-Single Nitric oxide oxidation with Na-Cat in NO-Single CO-Na-Single Carbon monoxide oxidation with Na-Cat in CO-Single C3H6-Na-Single Propylene oxidation with Na-Cat in C3H6-Single NO-Ca-Single Nitric oxide oxidation with Ca-Cat in NO-Single CO-Ca-Single Carbon monoxide oxidation with Ca-Cat in CO-Single C3H6-Ca-Single Propylene oxidation with Ca-Cat in C3H6-Single NO-F-Combo-T Nitric oxide oxidation with F-Cat in Combo-T CO-F-Combo-T Carbon monoxide oxidation with F-Cat in Combo-T C3H6-F-Combo-T Propylene oxidation with F-Cat in Combo-T NO-P-Combo-T Nitric oxide oxidation with P-Cat in Combo-T CO-P-Combo-T Carbon monoxide oxidation with P-Cat in Combo-T C3H6-P-Combo-T Propylene oxidation with P-Cat in Combo-T NO-Na-Combo-T Nitric oxide oxidation with Na-Cat in Combo-T CO-Na-Combo-T Carbon monoxide oxidation with Na-Cat in Combo-T C3H6-Na-Combo-T Propylene oxidation with Na-Cat in Combo-T NO-Ca-Combo-T Nitric oxide oxidation with Ca-Cat in Combo-T CO-Ca-Combo-T Carbon monoxide oxidation with Ca-Cat in Combo-T C3H6-Ca-Combo-T Propylene oxidation with Ca-Cat in Combo-T NO-F-Combo-SO2 Nitric oxide oxidation with F-Cat in Combo-SO2 CO-F-Combo-SO2 Carbon monoxide oxidation with F-Cat in Combo-SO2 C3H6-F-Combo-SO2 Propylene oxidation with F-Cat in Combo-SO2 NO-P-Combo-SO2 Nitric oxide oxidation with P-Cat in Combo-SO2 CO-P-Combo-SO2 Carbon monoxide oxidation with P-Cat in Combo-SO2 C3H6-P-Combo-SO2 Propylene oxidation with P-Cat in Combo-SO2 NO-Na-Combo-SO2 Nitric oxide oxidation with Na-Cat in Combo-SO2 CO-Na-Combo-SO2 Carbon monoxide oxidation with Na-Cat in Combo-SO2 C3H6-Na-Combo-SO2 Propylene oxidation with Na-Cat in Combo-SO2 NO-Ca-Combo-SO2 Nitric oxide oxidation with Ca-Cat in Combo-SO2 CO-Ca-Combo-SO2 Carbon monoxide oxidation with Ca-Cat in Combo-SO2 C3H6-Ca-Combo-SO2 Propylene oxidation with Ca-Cat in Combo-SO2 NO-F-trial-Combo Nitric oxide