Chapter Four Role of External Sites on Catalytic Polymer Degradation

Total Page:16

File Type:pdf, Size:1020Kb

Chapter Four Role of External Sites on Catalytic Polymer Degradation Plastic Catalytic Degradation Study of the role of external catalytic surface, Catalytic Reusability and Temperature Effects By Toju S. Kpere-Daibo April 2009 A Thesis submitted for the degree of Doctor of Philosophy of the University of London Department of Chemical Engineering University College London, London, WC1E 7JE 1 Abstract Technological advancements over the last century have lead large and continuous growth in the output of plastic materials. This exponential growth has created public concern over the environmental impact caused by the polymeric waste produced. These have acted as driving forces for a lot of current research aimed at the development of plastic recycle processes. As a result, the conversion of plastic waste to useful products is gaining increasing attention. The aim of this work was to study aspects of polymer catalytic degradation using zeolite based catalysts. More specifically the study focused on identifying the role of the external catalytic surface on overall polymer decomposition reactions, the reusability of the catalysts as well as temperature and acidity effects. The first stage of this investigation aimed to explore the premise behind the assumption that polymer catalytic degradation takes place initially on the external catalytic surface by selectively poisoning the external sites of a zeolite catalyst (ZSM- 5). Degradation results in a semi-batch reactor as well as thermogravimetric analysis demonstrated that the activity of poisoned catalyst samples was indeed lower than that of fresh catalyst. The next stage of the study involved an investigation of the extent of catalytic reusability of four zeolite catalysts - HZSM-5, USY and two commercial cracking catalysts containing 20 % and 40 % USY respectively. While the performance of US- Y showed deterioration with each cycle, ZSM-5 and both commercial cracking catalysts retained consistent levels of activity that enabled full polymer conversion in each cycle. Finally, the temperature effect on catalytic reactions was studied as well as the effect of catalyst acidity. While temperature effects were not conclusive regarding selectivity towards gas or liquid products prompting the suggestion of further work using a continuous flow reactor system, the formation of liquid products showed a maximum with the acidity content. 2 Acknowledgements I wish to thank my supervisor, Dr George Manos, all his patience and guidance throughout the entire course of this work. His contribution to my academic progress is immensely significant. The many sacrifices made by all members of my family, particularly my Mum and Dad cannot be overemphasised enough. I am so grateful for all the love and support you have given me throughout this period. I am especially grateful for the unfaltering belief and confidence you held in me. And the constant prayers and encouragement you continue to give me. I would also like to acknowledge the support from my friends and would like to thank you all for your devotion and loyalty towards me. I would like to say that even when you haven’t known it you have all been there for me and given me that extra support when I have needed it at difficult moments. Finally I am thankful to God for all his blessings and for everything bestowed upon me. 3 Dedication Dedicated to the loving memory of my wonderful sister Mojirin 4 Table of Contents Abstract......................................................................................................................2 List of Figures..........................................................................................................10 List of Tables ...........................................................................................................14 Chapter One ...............................................................................................................15 Introduction.............................................................................................................15 1.1 Background .........................................................................................................15 1.2 Motivations and Objectives of this Work ...........................................................16 1.3 Outline of this Thesis..........................................................................................17 Chapter Two...............................................................................................................19 Literature Survey....................................................................................................19 2.1 Plastics ................................................................................................................19 2.2 Basics of Polymers..............................................................................................21 2.2.1 Polyethylene (PE) ............................................................................................21 2.2.2 Polypropylene (PP) ..........................................................................................22 2.2.3 The plastic-linear low-density polyethylene (LLDPE)....................................22 2.3 Classification of Plastic Recycling .....................................................................22 2.3.1 Primary recycling.............................................................................................23 2.3.2 Secondary Recycling .......................................................................................24 2.3.3 Tertiary Recycling ...........................................................................................24 2.3.4 Quaternary Recycling ......................................................................................25 2.4 Thermal and Catalytic Degradation ....................................................................25 5 2.5 Mechanism of the Degradation Process..............................................................28 2.5.1 Mechanism of Polymer Thermal Degradation.................................................29 2.5.2 Mechanism of Catalytic Cracking Reactions...................................................30 2.5.2.1 Cracking of a Carbon-Carbon Bond .........................................................32 2.5.2.2 Isomerization.............................................................................................32 2.5.2.3 Hydrogen Transfer....................................................................................33 2.6 Past Work Involving Methods of Recycling Plastic Waste................................34 2.7 Catalysis..............................................................................................................37 2.7.1 Basics of Catalysis ...........................................................................................37 2.7.2 Different Types of Catalysts ............................................................................39 2.8 Zeolite based catalysts ........................................................................................40 2.8.1 Silicalite and ZSM-5....................................................................................43 2.8.2 Ultrastable Y Zeolite (US-Y).......................................................................45 2.8.3 Commercial Cracking Catalysts ..................................................................46 2.8.4 Secondary Reactions and Over-Cracking ....................................................48 2.9 Silylation (Poisoning) .........................................................................................50 2.10 Temperature Programme Desorption (TPD) ....................................................52 2.11 Thermo-Gravimetric Analysis (TGA) ..............................................................54 2.12 Deactivation of Catalysts by Coking ................................................................55 Chapter Three ............................................................................................................57 Experimental ...........................................................................................................57 3.1 Introduction.........................................................................................................57 3.2 Materials .............................................................................................................58 3.3 Semi Batch Reactor.............................................................................................59 3.3.1 Equipment....................................................................................................59 6 3.3.2 Experimental procedure...............................................................................60 3.3.3 Experimental Calculations...........................................................................64 3.3.4 Boiling Point Distribution............................................................................67 3.4 Thermo-gravimetric Analysis Equipment (TGA)...............................................72 3.5 Temperature Programmed Desorption (TPD) ....................................................73 3.6 Chemical Liquid Deposition (CLD) ...................................................................74 Chapter Four..............................................................................................................75 Role of external sites on catalytic polymer degradation performance...............75 4.1 Introduction.........................................................................................................75
Recommended publications
  • Study of Polystyrene Degradation Using Continuous Distribution Kinetics in a Bubbling Reactor
    Korean J. Chem. Eng., 19(2), 239-245 (2002) Study of Polystyrene Degradation Using Continuous Distribution Kinetics in a Bubbling Reactor Wang Seog Cha†, Sang Bum Kim* and Benjamin J. McCoy** School of Civil and Environmental Engineering, Kunsan National University, Kunsan 573-701, Korea *Department of Chemical Engineering, Korea University, Seoul 136-701, Korea **Department of Chemical Engineering and Material Science, University of California, Davis, CA 95616, USA (Received 3 April 2001 • accepted 10 September 2001) Abstract−A bubbling reactor for pyrolysis of a polystyrene melt stirred by bubbles of flowing nitrogen gas at at- mospheric pressure permits uniform-temperature distribution. Sweep-gas experiments at temperatures 340-370 oC allowed pyrolysis products to be collected separately as reactor residue(solidified polystyrene melt), condensed vapor, and uncondensed gas products. Molecular-weight distributions (MWDs) were determined by gel permeation chro- matography that indicated random and chain scission. The mathematical model accounts for the mass transfer of vaporized products from the polymer melt to gas bubbles. The driving force for mass transfer is the interphase differ- ence of MWDs based on equilibrium at the vapor-liquid interface. The activation energy and pre-exponential of chain scission were determined to be 49 kcal/mol and 8.94×1013 s−1, respectively. Key words: Pyrolysis, Molecular-Weight-Distribution, Random Scission, Chain-end Scission, Continuous Distribution Theory INTRODUCTION Westerout et al. proposed a random-chain dissociation (RCD) model, based on evaporation of depolymerization products less than Fundamental and practical studies of plastics processing, such a certain chain length. In a subsequent paper [Westerout et al., 1997b] as energy recovery (production of fuel) and tertiary recycle (recov- on screen-heater pyrolysis, the RCD model was further described.
    [Show full text]
  • Pathways for Degradation of Plastic Polymers Floating in the Marine Environment
    Environmental Science Processes & Impacts View Article Online CRITICAL REVIEW View Journal | View Issue Pathways for degradation of plastic polymers floating in the marine environment Cite this: Environ. Sci.: Processes Impacts ,2015,17,1513 Berit Gewert, Merle M. Plassmann and Matthew MacLeod* Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information Creative Commons Attribution 3.0 Unported Licence. to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon–carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to Received 30th April 2015 precede biodegradation.
    [Show full text]
  • Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria
    polymers Article Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria Syahir Habib 1, Anastasia Iruthayam 1, Mohd Yunus Abd Shukor 1 , Siti Aisyah Alias 2,3 , Jerzy Smykla 4 and Nur Adeela Yasid 1,* 1 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] (S.H.); [email protected] (A.I.); [email protected] (M.Y.A.S.) 2 Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 3 National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia 4 Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza, 33, 31-120 Kraków, Poland; [email protected] * Correspondence: [email protected]; Tel.: +60-(0)3-9769-8297 Received: 7 September 2020; Accepted: 22 October 2020; Published: 6 November 2020 Abstract: Microplastic pollution is globally recognised as a serious environmental threat due to its ubiquitous presence related primarily to improper dumping of plastic wastes. While most studies have focused on microplastic contamination in the marine ecosystem, microplastic pollution in the soil environment is generally little understood and often overlooked. The presence of microplastics affects the soil ecosystem by disrupting the soil fertility and quality, degrading the food web, and subsequently influencing both food security and human health. This study evaluates the growth and biodegradation potential of the Antarctic soil bacteria Pseudomonas sp. ADL15 and Rhodococcus sp. ADL36 on the polypropylene (PP) microplastics in Bushnell Haas (BH) medium for 40 days.
    [Show full text]
  • Degradation and Recyclability of Poly (Ethylene Terephthalate)
    Chapter 4 Degradation and Recyclability of Poly (Ethylene Terephthalate) S. Venkatachalam, Shilpa G. Nayak, Jayprakash V. Labde, Prashant R. Gharal, Krishna Rao and Anil K. Kelkar Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48612 1. Introduction The physical and chemical properties of polymers depend on the nature, arrangement of chemical groups of their composition and the magnitude of intra or intermolecular forces i.e primary and secondary valence bonds present in the polymer. Degradation process occurs due to the influence of thermal, chemical, mechanical, radiative and biochemical factors occurring over a period of time resulting in deterioration of mechanical properties and colour of polymers. The degradation occurs due to changes accompanying with the main backbone or side groups of the polymer. Degradation is a chemical process which affects not only the chemical composition of the polymer but also the physical parameters such as colour of the polymer, chain conformation, molecular weight, molecular weight distribution, crystallinity, chain flexibility, cross-linking and branching. The nature of weak links and end groups in the polymers contribute to stability of polymers. The degradation process is initiated at the terminal units with subsequent depolymerization. For example paraformaldehyde with hydroxyl terminal starts to degrade at about 170°C whereas the same polymer with acetyl terminals decomposes at about 200°C [1]. Replacement of carbon main chain with hetero atoms like P, N, B increases the thermal stability e.g. PON polymers containing phosphorus, oxygen, nitrogen and silicon. The exposure of polymeric materials to environmental factors over a period of time will lead to deterioration of physical, chemical, thermal and electrical properties.
    [Show full text]
  • Effect of Polymer Degradation on Polymer Flooding in Heterogeneous Reservoirs
    polymers Article Effect of Polymer Degradation on Polymer Flooding in Heterogeneous Reservoirs Xiankang Xin 1 ID , Gaoming Yu 2,*, Zhangxin Chen 1,3, Keliu Wu 3 ID , Xiaohu Dong 1 and Zhouyuan Zhu 1 ID 1 College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China; [email protected] (X.X.); [email protected] (Z.C.); [email protected] (X.D.); [email protected] (Z.Z.) 2 College of Petroleum Engineering, Yangtze University, Wuhan 430100, China 3 Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +86-27-6911-1069 Received: 3 July 2018; Accepted: 31 July 2018; Published: 2 August 2018 Abstract: Polymer degradation is critical for polymer flooding because it can significantly influence the viscosity of a polymer solution, which is a dominant property for polymer enhanced oil recovery (EOR). In this work, physical experiments and numerical simulations were both used to study partially hydrolyzed polyacrylamide (HPAM) degradation and its effect on polymer flooding in heterogeneous reservoirs. First, physical experiments were conducted to determine basic physicochemical properties of the polymer, including viscosity and degradation. Notably, a novel polymer dynamic degradation experiment was recommended in the evaluation process. Then, a new mathematical model was proposed and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed to examine both polymer static and dynamic degradation. The designed simulator was validated by comparison with the simulation results obtained from commercial software and the results from the polymer flooding experiments. This simulator further investigated and validated polymer degradation and its effect.
    [Show full text]
  • ASPHALTENE GRAFT COPOLYMER by FT-IR SPECTROSCOPY CT&F Ciencia, Tecnología Y Futuro, Vol
    CT&F Ciencia, Tecnología y Futuro ISSN: 0122-5383 [email protected] ECOPETROL S.A. Colombia León-Bermúdez, Adan-Yovani; Salazar, Ramiro SYNTHESIS AND CHARACTERIZATION OF THE POLYSTYRENE - ASPHALTENE GRAFT COPOLYMER BY FT-IR SPECTROSCOPY CT&F Ciencia, Tecnología y Futuro, vol. 3, núm. 4, diciembre, 2008, pp. 157-167 ECOPETROL S.A. Bucaramanga, Colombia Available in: http://www.redalyc.org/articulo.oa?id=46530410 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SYNTHESIS AND CHARACTERIZATION OF THE POLYSTYRENE - ASPHALTENE GRAFT COPOLYMER BY FT-IR SPECTROSCOPY Ciencia, Tecnología y Futuro SYNTHESIS AND CHARACTERIZATION OF THE POLYSTYRENE - ASPHALTENE GRAFT COPOLYMER BY FT-IR SPECTROSCOPY Adan-Yovani León-Bermúdez1* and Ramiro Salazar1 1Universidad Industrial de Santander (UIS) - Grupo de Polímeros, Bucaramanga, Santander, Colombia e-mail: [email protected] (Received April 30, 2008; Accepted Nov. 27, 2008) he creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheologic characteristics and physical properties Tfor the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionali- zation is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine – NH2 free group, that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer.
    [Show full text]
  • Palladium-Bismuth Intermetallic and Surface-Poisoned Catalysts for the Semi-Hydrogenation of 2-Methyl-3-Butyn-2-Ol
    Accepted Manuscript Title: Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol Author: Nikolay Cherkasov Alex O. Ibhadon Alan McCue James A. Anderson Shaun K. Johnston PII: S0926-860X(15)00136-2 DOI: http://dx.doi.org/doi:10.1016/j.apcata.2015.02.038 Reference: APCATA 15280 To appear in: Applied Catalysis A: General Received date: 1-12-2014 Revised date: 4-2-2015 Accepted date: 20-2-2015 Please cite this article as: N. Cherkasov, A.O. Ibhadon, A. McCue, J.A. Anderson, S.K. Johnston, Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol, Applied Catalysis A, General (2015), http://dx.doi.org/10.1016/j.apcata.2015.02.038 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights • Pd-Bi catalysts were studied in the 2-methyl-3-butyn-3-ol semi-hydrogenation • Poisoning with Bi increases alkene selectivity, but decreases activity • Poisoning with Bi hinders the formation of Pd beta-hydride phase • Kinetic modelling suggets significant ligand effects at high Bi content Accepted Manuscript 1 Page 1 of 25 Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi- hydrogenation of 2-methyl-3-butyn-2-ol Nikolay Cherkasova, Alex O.
    [Show full text]
  • Predictive Lifetime Models of Polymer Insulation Degradation and Biorenewable Thermosets Through Cati
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Polymer damage mitigation--predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications Peter Raymond Hondred Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanics of Materials Commons Recommended Citation Hondred, Peter Raymond, "Polymer damage mitigation--predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications" (2013). Graduate Theses and Dissertations. 13105. https://lib.dr.iastate.edu/etd/13105 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Polymer damage mitigation—predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self- healing applications by Peter Raymond Hondred A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Materials Science and Engineering Program of Study Committee: Michael R. Kessler, Major Professor Nicola
    [Show full text]
  • Properties of Poly(Vinyl Chloride) Modified by Cellulose
    Polymer Journal, Vol. 37, No. 5, pp. 340–349 (2005) Properties of Poly(vinyl chloride) Modified by Cellulose y Halina KACZMAREK, Krzysztof BAJER, and Andrzej PODGO´ RSKI Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun´, Poland (Received July 30, 2004; Accepted February 9, 2005; Published May 15, 2005) ABSTRACT: Compositions of poly(vinyl chloride) with 2–10 (w/w) cellulose were prepared by extrusion. The mechanical properties and water absorptiveness of modified PVC have been measured. For the purpose of estimating the susceptibility to microorganisms’ attack, all samples were being composted in garden soil for up to 14 months. Mi- crobial analysis of soil used has been made. The biodegradation efficiency was estimated in terms and by means of weight loss, ATR-FT IR spectroscopy, as well as changes in mechanical resistance. Moreover, thermal stability of virgin and composted samples was studied by ther- mogravimetry. It has been found that the addition of a small amount of cellulose to PVC changes only slightly its properties. Inter- molecular interactions and also some thermal crosslinking taking place during the processing of samples’ preparation retard the biodegradation of PVC + cellulose blends. [DOI 10.1295/polymj.37.340] KEY WORDS Poly(vinyl chloride) / Cellulose / Blend Properties / Biodegradation / Thermal Stability / Polymeric materials have considerably influenced amounts (2–10 w/w) of cellulose, and to check the and enhanced the development of numerous branches susceptibility of samples to biodegradation. Accord- of industry owing to their various and diverse proper- ing to the published data,10 even a low content of nat- ties which can be additionally modified in a wide ural component in polymeric composition can induce range aimed at meeting the commercial and utility re- and facilitate its biodegradation.
    [Show full text]
  • Current Status of Methods Used in Degradation of Polymers: a Review
    MATEC Web of Conferences 144, 02023 (2018) https://doi.org/10.1051/matecconf/201814402023 RiMES 2017 Current Status of Methods Used In Degradation of Polymers: A Review Aishwarya Kulkarni1 and Harshini Dasari1 1Department of Chemical Engineering, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, India. Abstract. Degradation of different polymers now a day is the most crucial thing to carry out. It possesses threats to human health as well as to the environment. Different polymers like PVA, PVC, and PP with high density and low density are one of the most consumed by population and also their degradation is a bit difficult. For this many people have started working on effective methods of degradation of these polymers. This can be done by thermal degradation and pyrolysis which requires high temperature, bio degradation using starch, bacteria etc and photo degradation. Traditional gravimetric and respirometric techniques are the methods currently used in testing. They fit readily for degradable polymeric materials usually. Also they are well suited for biodegradable components with polymer blends. But the recent polymer generation is comparatively resistant to bio degradation of polymers hence they cannot be used here. The polymer matrices are readily present in the plasticizers boosting the strength of polymeric material hence in addition; there is the mechanism of degradation. The information on various methods discussed in this review is planned to illustrate a best fit of methods for those who are interested in testing the degradation of polymers under different environmental conditions and selection of appropriate technique for specific combination of mixture of polymer and catalysts which helps to degrade the polymeric material.
    [Show full text]
  • Photo-Oxidative Degradation of Abs Copolymer a Thesis Submitted to the Graduate School of Natural and Applied Science of Middle
    PHOTO-OXIDATIVE DEGRADATION OF ABS COPOLYMER A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYLİN GÜZEL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN POLYMER SCIENCE AND TECHNOLOGY SEPTEMBER 2009 Approval of the thesis PHOTO-OXIDATIVE DEGRADATION OF ABS COPOLYMER Submitted by AYLİN GÜZEL in partial fulfillment of the requirements for the degree of Master of Science in Polymer and Technology Department, Middle East Technical University by, Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Cevdet Kaynak Head of Department, Polymer Science and Technology Prof. Dr. Teoman Tinçer Supervisor, Chemistry Dept., METU Prof. Dr. Cevdet Kaynak Co-Supervisor, Metallurgical and Materials Eng. Dept., METU Examining Committee Members: Prof. Dr. Leyla Aras Chemistry Dept., METU Prof. Dr. Teoman Tinçer Chemistry Dept., METU Prof. Dr. Cevdet Kaynak Metallurgical and Materials Eng., Dept. METU Prof. Dr. Savaş Küçükyavuz Chemistry Dept., METU Assoc. Prof. Dr. Atilla Cihaner Chemistry Group, ATILIM UNIVERSITY Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that have not original to this work. Name, Last name : Aylin Güzel Signature : iii ABSTRACT PHOTO-OXIDATIVE DEGRADATION OF ABS COPOLYMER Güzel, Aylin M.S., Department of Polymer Science and Technology Supervisor: Prof. Dr. Teoman Tinçer Co-Supervisor: Prof. Dr. Cevdet Kaynak September 2009, 55 pages Acrylonitrile-butadiene-styrene (ABS) polymer is one of the most popular copolymer having an elastomeric butadiene phase dispersed in rigid amorphous styrene and semi-crystalline acrylonitrile.
    [Show full text]
  • Heterogeneous Catalyst Deactivation and Regeneration: a Review
    Catalysts 2015, 5, 145-269; doi:10.3390/catal5010145 OPEN ACCESS catalysts ISSN 2073-4344 www.mdpi.com/journal/catalysts Review Heterogeneous Catalyst Deactivation and Regeneration: A Review Morris D. Argyle and Calvin H. Bartholomew * Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +1-801-422-4162, Fax: +1-801-422-0151. Academic Editor: Keith Hohn Received: 30 December 2013 / Accepted: 12 September 2014 / Published: 26 February 2015 Abstract: Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key features and considerations for each of these deactivation types is reviewed in detail with reference to the latest literature reports in these areas. Two case studies on the deactivation mechanisms of catalysts used for cobalt Fischer-Tropsch and selective catalytic reduction are considered to provide additional depth in the topics of sintering, coking, poisoning, and fouling. Regeneration considerations and options are also briefly discussed for each deactivation mechanism. Keywords: heterogeneous catalysis; deactivation; regeneration 1. Introduction Catalyst deactivation, the loss over time of catalytic activity and/or selectivity, is a problem of great and continuing concern in the practice of industrial catalytic processes. Costs to industry for catalyst replacement and process shutdown total billions of dollars per year. Time scales for catalyst deactivation vary considerably; for example, in the case of cracking catalysts, catalyst mortality may be on the order of seconds, while in ammonia synthesis the iron catalyst may last for 5–10 years.
    [Show full text]