Automatic Generation of Sequence Diagrams and Updating Domain Model from Use Cases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Writing and Reviewing Use-Case Descriptions
Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM PART II WRITING AND REVIEWING USE-CASE DESCRIPTIONS Part I, Getting Started with Use-Case Modeling, introduced the basic con- cepts of use-case modeling, including defining the basic concepts and understanding how to use these concepts to define the vision, find actors and use cases, and to define the basic concepts the system will use. If we go no further, we have an overview of what the system will do, an under- standing of the stakeholders of the system, and an understanding of the ways the system provides value to those stakeholders. What we do not have, if we stop at this point, is an understanding of exactly what the system does. In short, we lack the details needed to actually develop and test the system. Some people, having only come this far, wonder what use-case model- ing is all about and question its value. If one only comes this far with use- case modeling, we are forced to agree; the real value of use-case modeling comes from the descriptions of the interactions of the actors and the system, and from the descriptions of what the system does in response to the actions of the actors. Surprisingly, and disappointingly, many teams stop after developing little more than simple outlines for their use cases and consider themselves done. These same teams encounter problems because their use cases are vague and lack detail, so they blame the use-case approach for having let them down. The failing in these cases is not with the approach, but with its application. -
Document Title Requirements on Debugging in AUTOSAR
Requirements on Debugging in AUTOSAR AUTOSAR Release 4.2.2 Document Title Requirements on Debugging in AUTOSAR Document Owner AUTOSAR Document Responsibility AUTOSAR Document Identification No 332 Document Classification Auxiliary Document Status Final Part of AUTOSAR Release 4.2.2 Document Change History Release Changed by Change Description 4.2.2 AUTOSAR Marked the document as obsolete Release Management 4.2.1 AUTOSAR Editorial changes Release Management 4.1.2 AUTOSAR Updated reference to RS feature document Release Editorial changes Management 4.1.1 AUTOSAR Updated the format of requirements according Administration to TPS_StandardizationTemplate Updated the chapters 2 and 5 Replaced Complex Device Driver by Complex Driver 3.1.5 AUTOSAR Initial release Administration 1 of 19 Document ID 332: AUTOSAR_SRS_Debugging - AUTOSAR confidential - Requirements on Debugging in AUTOSAR AUTOSAR Release 4.2.2 Disclaimer This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the specification. The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights. This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher. The AUTOSAR specifications have been developed for automotive applications only. -
The Guide to Succeeding with Use Cases
USE-CASE 2.0 The Guide to Succeeding with Use Cases Ivar Jacobson Ian Spence Kurt Bittner December 2011 USE-CASE 2.0 The Definitive Guide About this Guide 3 How to read this Guide 3 What is Use-Case 2.0? 4 First Principles 5 Principle 1: Keep it simple by telling stories 5 Principle 2: Understand the big picture 5 Principle 3: Focus on value 7 Principle 4: Build the system in slices 8 Principle 5: Deliver the system in increments 10 Principle 6: Adapt to meet the team’s needs 11 Use-Case 2.0 Content 13 Things to Work With 13 Work Products 18 Things to do 23 Using Use-Case 2.0 30 Use-Case 2.0: Applicable for all types of system 30 Use-Case 2.0: Handling all types of requirement 31 Use-Case 2.0: Applicable for all development approaches 31 Use-Case 2.0: Scaling to meet your needs – scaling in, scaling out and scaling up 39 Conclusion 40 Appendix 1: Work Products 41 Supporting Information 42 Test Case 44 Use-Case Model 46 Use-Case Narrative 47 Use-Case Realization 49 Glossary of Terms 51 Acknowledgements 52 General 52 People 52 Bibliography 53 About the Authors 54 USE-CASE 2.0 The Definitive Guide Page 2 © 2005-2011 IvAr JacobSon InternationAl SA. All rights reserved. About this Guide This guide describes how to apply use cases in an agile and scalable fashion. It builds on the current state of the art to present an evolution of the use-case technique that we call Use-Case 2.0. -
INCOSE: the FAR Approach “Functional Analysis/Allocation and Requirements Flowdown Using Use Case Realizations”
in Proceedings of the 16th Intern. Symposium of the International Council on Systems Engineering (INCOSE'06), Orlando, FL, USA, Jul 2006. The FAR Approach – Functional Analysis/Allocation and Requirements Flowdown Using Use Case Realizations Magnus Eriksson1,2, Kjell Borg1, Jürgen Börstler2 1BAE Systems Hägglunds AB 2Umeå University SE-891 82 Örnsköldsvik SE-901 87 Umeå Sweden Sweden {magnus.eriksson, kjell.borg}@baesystems.se {magnuse, jubo}@cs.umu.se Copyright © 2006 by Magnus Eriksson, Kjell Borg and Jürgen Börstler. Published and used by INCOSE with permission. Abstract. This paper describes a use case driven approach for functional analysis/allocation and requirements flowdown. The approach utilizes use cases and use case realizations for functional architecture modeling, which in turn form the basis for design synthesis and requirements flowdown. We refer to this approach as the FAR (Functional Architecture by use case Realizations) approach. The FAR approach is currently applied in several large-scale defense projects within BAE Systems Hägglunds AB and the experience so far is quite positive. The approach is illustrated throughout the paper using the well known Automatic Teller Machine (ATM) example. INTRODUCTION Organizations developing software intensive defense systems, for example vehicles, are today faced with a number of challenges. These challenges are related to the characteristics of both the market place and the system domain. • Systems are growing ever more complex, consisting of tightly integrated mechanical, electrical/electronic and software components. • Systems have very long life spans, typically 30 years or longer. • Due to reduced acquisition budgets, these systems are often developed in relatively short series; ranging from only a few to several hundred units. -
Plantuml Language Reference Guide (Version 1.2021.2)
Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants -
Open Research Online UML in Practice Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs UML in practice Conference Item How to cite: Petre, Marian (2013). UML in practice. In: 35th International Conference on Software Engineering (ICSE 2013), 18-26 May 2013, San Francisco, CA, USA (forthcoming), pp. 722–731. For guidance on citations see FAQs. c 2013 IEEE Version: Accepted Manuscript Link(s) to article on publisher’s website: http://2013.icse-conferences.org/ Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copy- right owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk UML in Practice Marian Petre Centre for Research in Computing The Open University Milton Keynes, UK [email protected] Abstract—UML has been described by some as “the lingua UML “with rigor” (as he later expressed to the informant). In franca of software engineering”. Evidence from industry does contrast, the informant concluded that probably 45 of the 47 not necessarily support such endorsements. How exactly is UML were like him: “selective borrowers” … “who use some of the being used in industry – if it is? This paper presents a corpus of principles sometimes”. The IBM speaker and the informant interviews with 50 professional software engineers in 50 had very different models of what ‘using UML’ means in companies and identifies 5 patterns of UML use. practice, with different implications. Index Terms—UML, software development, software design, Budgen et al. -
Tool Use in Software Modelling Education
Tool use in software modelling education Seiko Akayama1, Birgit Demuth3, Timothy C. Lethbridge4, Marion Scholz2, Perdita Stevens5, and Dave R. Stikkolorum6 1 Kyushu University, Japan 2 Vienna University of Technology, Austria 3 Technische Universit¨atDresden, Germany 4 University of Ottawa Canada 5 University of Edinburgh Scotland 6 Leiden University The Netherlands Abstract. An important decision that must be taken by anyone design- ing a course involving (object oriented software) modelling is what tool support, if any, to use. Options include picking an industrial strength modelling tool, using a tool specifically designed for educational use, or eschewing tool use altogether in favour of pencil and paper. The best an- swer will depend on many factors, including the prior experience of the students (and staff), the length and organisation of the course, and the learning objectives. Moreover, decisions on tools have an impact on other aspects of course design. In this informal paper, the result of discussion at the MODELS Educators' Symposium 2013, we survey previous work on this question, discuss our own experience, and draw out some key issues that someone designing a new course involving modelling must consider. 1 Introduction Teaching object oriented design and modelling in a university is important not only because these are important skills that students will need if they pursue careers in software development, but also because this area is a key interface be- tween research and teaching. This double motivation { we might say, vocational and intellectual { for teaching design and modelling is itself a source of challenge for educators. We experience a tension between the desire to train students in the skills they will need after university, and the desire to have them reflect on the nature of design and modelling and the ways in which these activities could be improved with the help of cutting edge research. -
Use Case Tutorial Version X.X ● April 18, 2016
Use Case Tutorial Version X.x ● April 18, 2016 Company Name Limited Street City, State ZIP Country phone: +1 000 123 4567 Company Name Limited Street City, State ZIP Country phone: +1 000 123 4567 Company Name Limited Street City, State ZIP Country phone: +1 000 123 4567 www.website.com [Company Name] [Document Name] [Project Name] [Version Number] Table of Contents Introduction ..............................................................................................3 1. Use cases and activity diagrams .......................................................4 1.1. Use case modelling ....................................................................4 1.2. Use cases and activity diagrams ..................................................7 1.3. Actors .......................................................................................7 1.4. Describing use cases.................................................................. 8 1.5. Scenarios ................................................................................10 1.6. More about actors ....................................................................13 1.7. Modelling the relationships between use cases ...........................15 1.8. Stereotypes .............................................................................15 1.9. Sharing behaviour between use cases........................................ 16 1.10. Alternatives to the main success scenario ..................................17 1.11. To extend or include? ...............................................................20 -
User-Stories-Applied-Mike-Cohn.Pdf
ptg User Stories Applied ptg From the Library of www.wowebook.com The Addison-Wesley Signature Series The Addison-Wesley Signature Series provides readers with practical and authoritative information on the latest trends in modern technology for computer professionals. The series is based on one simple premise: great books come from great authors. Books in the series are personally chosen by expert advi- sors, world-class authors in their own right. These experts are proud to put their signatures on the cov- ers, and their signatures ensure that these thought leaders have worked closely with authors to define topic coverage, book scope, critical content, and overall uniqueness. The expert signatures also symbol- ize a promise to our readers: you are reading a future classic. The Addison-Wesley Signature Series Signers: Kent Beck and Martin Fowler Kent Beck has pioneered people-oriented technologies like JUnit, Extreme Programming, and patterns for software development. Kent is interested in helping teams do well by doing good — finding a style of software development that simultaneously satisfies economic, aesthetic, emotional, and practical con- straints. His books focus on touching the lives of the creators and users of software. Martin Fowler has been a pioneer of object technology in enterprise applications. His central concern is how to design software well. He focuses on getting to the heart of how to build enterprise software that will last well into the future. He is interested in looking behind the specifics of technologies to the patterns, ptg practices, and principles that last for many years; these books should be usable a decade from now. -
UNIT 1 UML DIAGRAMS Introduction to OOAD – Unified Process
VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE UNIT 1 UML DIAGRAMS Introduction to OOAD – Unified Process - UML diagrams – Use Case – Class Diagrams– Interaction Diagrams – State Diagrams – Activity Diagrams – Package, component and Deployment Diagrams. INTRODUCTION TO OOAD ANALYSIS Analysis is a creative activity or an investigation of the problem and requirements. Eg. To develop a Banking system Analysis: How the system will be used? Who are the users? What are its functionalities? DESIGN Design is to provide a conceptual solution that satisfies the requirements of a given problem. Eg. For a Book Bank System Design: Bank(Bank name, No of Members, Address) Student(Membership No,Name,Book Name, Amount Paid) OBJECT ORIENTED ANALYSIS (OOA) Object Oriented Analysis is a process of identifying classes that plays an important role in achieving system goals and requirements. Eg. For a Book Bank System, Classes or Objects identified are Book-details, Student-details, Membership-Details. OBJECT ORIENTED DESIGN (OOD) Object Oriented Design is to design the classes identified during analysis phase and to provide the relationship that exists between them that satisfies the requirements. Eg. Book Bank System Class name Book-Bank (Book-Name, No-of-Members, Address) Student (Name, Membership No, Amount-Paid) OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD) • OOAD is a Software Engineering approach that models an application by a set of Software Development Activities. YEAR/SEM: III/V CS6502-OOAD Page 1 VEL TECH HIGH TECH Dr. RANGARAJAN Dr. SAKUNTHALA ENGINEERING COLLEGE • OOAD emphasis on identifying, describing and defining the software objects and shows how they collaborate with one another to fulfill the requirements by applying the object oriented paradigm and visual modeling throughout the development life cycles. -
Executing UML Models
Executing UML Models Miguel Pinto Luz1, Alberto Rodrigues da Silva1 1Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa – Portugal {miguelluz, alberto.silva}@acm.org Abstract. Software development evolution is a history of permanent seeks for raising the abstraction level to new limits overcoming new frontiers. Executable UML (xUML) comes this way as the expectation to achieve the next level in abstraction, offering the capability of deploying a xUML model in a variety of software environments and platforms without any changes. This paper comes as a first expedition inside xUML, exploring the main aspects of its specification including the action languages support and the fundamental MDA compliance. In this paper is presented a future new xUML tool called XIS-xModels that gives Microsoft Visio new capabilities of running and debugging xUML models. This paper is an outline of the capabilities and main features of the future application. Keywords: UML, executable UML, Model Debugging, Action Language. 1. Introduction In a dictionary we find that an engineer is a person who uses scientific knowledge to solve practical problems, planning and directing, but an information technology engineer is someone that spends is time on implementing lines of code, instead of being focus on planning and projecting. Processes, meetings, models, documents, or even code are superfluous artifacts for organizations: all they need is well design and fast implemented working system, that moves them towards a new software development paradigm, based on high level executable models. According this new paradigm it should be possible to reduce development time and costs, and to bring new product quality warranties, only reachable by executing, debugging and testing early design stages (models). -
Use Cases, User Stories and Bizdevops
Use Cases, User Stories and BizDevOps Peter Forbrig University of Rostock, Chair in Software Engineering, Albert-Einstein-Str. 22, 18055 Rostock [email protected] Abstract. DevOps is currently discussed a lot in computer science communi- ties. BizDev (business development) is only mentioned once in a computer sci- ence paper in connection with Continuous Software Engineering. Otherwise it is used in the domain of business administration only. Additionally, there seems to be a different interpretation of the term in the two communities. The paper discusses the different interpretations found in the literature. Addi- tionally, the idea of BizDevOps is discussed in conjunction with further ideas of taking new requirements for software features into account. These requirements can be described by models on different level of granularity. Starting points are use cases, use-case slices, user stories, and scenarios. They have to be commu- nicated between stakeholders. It is argued in this paper that storytelling can be a solution for that. It is used in as well in software development as in manage- ment. Keywords: BizDev, DevOps, BizDevOps, Continuous Requirements Engineer- ing, Continuous Software Engineering, Agile Software Development, Storytell- ing. 1 Introduction Developing Businesses if often related with the development of software because nowadays business processes have to be supported by IT. Continuous requirements engineering has to be performed to provide continuously the optimal support. Contin- uous business development seems to be a good description for the combined devel- opment of software and business. This term is not used so very often. Nevertheless, it exists like in [17]. However, more often the abbreviation BizDev (business development) is used.