Methane Mono-Oxidation Electrocatalysis by Palladium and Platinum Salts
Total Page:16
File Type:pdf, Size:1020Kb
ABC METHANE MONO-OXIDATION ELECTROCATALYSIS BY PALLADIUM AND PLATINUM SALTS by R. Soyoung Kim B.S. and M.S., Chemistry Seoul National University, 2014 SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MAY 2020 © 2020 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ___________________________________________________________________ Department of Chemistry May 8, 2020 Certified by: _________________________________________________________________________ Yogesh Surendranath Paul M. Cook Career Development Associate Professor Thesis Supervisor Accepted by: _________________________________________________________________________ Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Departmental Committee on Graduate Students Title page 1 2 Signature page This doctoral thesis has been examined by a Committee of the Department of Chemistry as follows: Professor Mircea Dincă _________________________________________________________________ Department of Chemistry Thesis Committee Chairman Professor Yogesh Surendranath __________________________________________________________ Department of Chemistry Thesis Supervisor Professor Christopher Cummins __________________________________________________________ Department of Chemistry Committee Member 3 4 Abstract METHANE MONO-OXIDATION ELECTROCATALYSIS BY PALLADIUM AND PLATINUM SALTS BY R. SOYOUNG KIM SUBMITTED TO THE DEPARTMENT OF CHEMISTRY ON MAY 8, 2020 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY Abstract Selective oxidation of methane to methanol would enable better utilization of natural gas resources. Many homogeneous metal ions activate methane under mild conditions, but turning this reactivity into catalysis requires a viable oxidation step. Electrochemistry offers unique advantages in this regard, and this thesis demonstrates two mechanistically distinct approaches for methane functionalization electrocatalysis. Following the first approach, a novel high-valent Pd complex with exceptional methane functionalization reaction rates is electrochemically generated in fuming sulfuric acid. We present a structural model of this complex as a PdIII dimer with a Pd–Pd bond and a 5-fold O-atom sulfate/bisulfate coordination environment at each Pd atom. We also discover, using EPR spectroscopy, a mixed-valent II,III Pd2 complex in the electrochemical oxidation sequence. From these and redox potential measurements, II III a comprehensive thermodynamic landscape for the oxidation of Pd to Pd 2 emerge for the first time, and III the critical role of M–M and M–L bonding in driving the electrochemical self-assembly of Pd 2 is exposed. Building on these structural studies, we arrive at a mechanistic model for methane functionalization by III Pd 2 that simultaneously yields methyl bisulfate (MBS) and methanesulfonic acid (MSA). Rate-limiting H III atom abstraction by Pd 2 and product bifurcation from the methyl radical intermediate is proposed based on experimentally determined rate laws and observations with radical scavengers and initiators. DFT calculations likewise support a shared outer-sphere proton-coupled electron transfer (PCET) reaction for the generation of both products. Following the second approach for methane functionalization electrocatalysis, we establish an electrochemical solution to the long-standing oxidant problem of Shilov’s PtII catalyst. Inner-sphere electron transfer facilitates the electrochemical oxidation of PtII to PtIV on Cl-adsorbed platinum electrodes without concomitant methanol oxidation. The favorable catalytic property of this electrode is exploited for the continuous regeneration of the PtIV oxidant during PtII-catalyzed methane functionalization. The critical PtII/IV ratio is maintained via dynamic modulation of the electric current and in situ monitoring of the solution redox potential. Thereby, we show stable and sustained turnover of Shilov’s catalyst for the first time. Thesis Supervisor: Yogesh Surendranath Title: Paul M. Cook Career Development Associate Professor 5 6 Table of Contents Title page ........................................................................................................................................ 1 Signature page ............................................................................................................................... 3 Abstract .......................................................................................................................................... 5 Table of Contents .......................................................................................................................... 7 Table of Figures ........................................................................................................................... 10 Table of Schemes ......................................................................................................................... 17 Table of Tables ............................................................................................................................. 18 List of Abbreviations ................................................................................................................... 20 1. Introduction ........................................................................................................................ 21 1.1. Mild and Selective Oxidation of Methane to Methanol ..................................................... 21 1.2. Organometallic C–H Activation for Methane Functionalization ...................................... 22 1.2.1. Categories of Organometallic C–H Activation ........................................................... 22 1.2.2. Challenges Involving the Oxidation Step ................................................................... 25 1.3. Electrochemical Methane Functionalization Approaches ................................................. 26 1.3.1. Potential Advantages of Methane Functionalization Catalysis by Electrochemical Oxidation ..................................................................................................................................... 26 1.3.2. Mechanism-based Adaptation of Electrochemical Oxidation for Organometallic Methane Functionalization Catalysis .......................................................................................... 27 1.4. Layout of the Thesis .............................................................................................................. 30 1.5. Summary and Prospectus ..................................................................................................... 30 1.6. References .............................................................................................................................. 32 III 2. Structure of Pd 2 and Its Mechanism of Formation via Electrochemical Oxidation . 36 2.1. Introduction ........................................................................................................................... 36 III 1 2.1.1. Electro-generated Pd 2 in sulfuric acid ..................................................................... 36 III 2.1.2. The need for elucidation of the structure of Pd 2 and its formation mechanism ........ 38 2.2. Results and Discussions ........................................................................................................ 39 III 2.2.1. Structure of Pd 2 ......................................................................................................... 39 II,III 2.2.2. Identification and Structural Assignment of a Pd2 Intermediate ............................. 44 III 2.2.3. Structural and Thermochemical Basis for Electrochemical Pd 2 Formation ............. 46 2.3. Conclusions ............................................................................................................................ 48 2.4. Methods and Additional Information.................................................................................. 49 2.4.1. Chemicals, Materials and General Remarks ............................................................... 49 7 2.4.2. Preparation of samples for X-ray absorption and Raman spectroscopy ..................... 50 2.4.3. Preparation of samples for EPR spectroscopy ............................................................ 53 II III 2.4.4. Determination of [Pd ] and [Pd 2] from UV–Vis spectroscopy ................................. 55 2.4.5. X-ray Absorption Spectroscopy .................................................................................. 57 2.4.6. Raman Spectroscopy ................................................................................................... 61 2.4.7. Electron Paramagnetic Resonance (EPR) spectroscopy ............................................. 63 2.4.8. Determination of Thermodynamic Quantities ............................................................. 64 III 2.4.9. Computational Modeling of Pd 2 ............................................................................... 69 2.5. References .............................................................................................................................. 71 III 3. Reaction Mechanism of Rapid and Selective Methane Functionalization by Pd 2 .... 75 3.1. Introduction ..........................................................................................................................