Ammonite Distribution Across the Jurassic–Cretaceous Boundary in Central Russia V

Total Page:16

File Type:pdf, Size:1020Kb

Ammonite Distribution Across the Jurassic–Cretaceous Boundary in Central Russia V ISSN 00310301, Paleontological Journal, 2011, Vol. 45, No. 4, pp. 379–389. © Pleiades Publishing, Ltd., 2011. Original Russian Text © V.V. Mitta, Jingeng Sha, 2011, published in Paleontologicheskii Zhurnal, 2011, No. 4, pp. 26–34. Ammonite Distribution Across the Jurassic–Cretaceous Boundary in Central Russia V. V. Mittaa and Jingeng Shab aBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected] bLPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, No. 39 East Beijing Road, Nanjing, 210008 China email: [email protected] Received November 9, 2010 Abstract—The distribution of ammonites across the Jurassic–Cretaceous boundary of the central part of the Russian Platform is discussed. The nomenclature of Craspedites nodiger (Eichwald, 1962) and Hectoroceras tolijense (Nikitin, 1881) is updated. A new species, Craspedites ultimus sp. nov., is described from the basal horizons of the rjasanensis Zone (Ryazanian Stage). The Hectoroceras tolijense and Hectoroceras kochi faunal horizons lying between the nodiger and rjasanensis zones are united in the kochi Zone of the basal Ryazanian. Previous opinions suggesting a hiatus between the Volgian and Ryazanian stages are reviewed and rejected. Keywords: ammonites, Craspedites, Hectoroceras, Ryazanian Stage, Volgian Stage, Russian platform. DOI: 10.1134/S0031030111040083 INTRODUCTION of different authors on the correlation of the Boreal scales with the presumably uninterrupted Tithonian– The Boreal–Tethyan correlation has been a major Berriasian zonation. However the continuous succes problem for MidMesozoic biostratigraphy. The sepa sion in the interval is not confirmed, as the upper ration of marine basins at the end of the Jurassic led to Tithonian zone (Durangites) is insufficiently studied in the formation of strongly differentiated faunas of dif the stratotype region and still has no index species. ferent origins, Boreal and Tethyan (Submediterra The taxonomic composition and distribution of nean). This presents considerable difficulties for cor ammonites in the jacobi Zone, which is presently con relation of the terminal Jurassic and basal Cretaceous. sidered to be the basal Berriasian zone, are also insuf Consequently, two parallel stages are recognized in the 1 topmost Jurassic (Tithonian in the submediterranean ficiently studied. paleogeographic regions and Volgian in the Boreal Realm); and in the lowermost Cretaceous (Berriasian Mesezhnikov and his colleagues from Leningrad in Submediterranean Province and Ryazanian in the (now St. Petersburg) and Novosibirsk came to a differ Boreal Realm). To reliably establish correlation mark ent conclusion in the 1970s after paleontological and ers, the primary task is to examine the systematic com stratigraphic study of the Jurassic–Cretaceous beds in position and stratigraphic distribution of the guide fos the Ryazan Region. In several outcrops near the vil 2 sils (primarily ammonites, the most important orthos lage of Kuzminskoe in the basin of the Oka River, his tratigraphic group) in regions with the highest group found Late Volgian Garniericeras subclypeiforme potential for Boreal–Tethyan correlation. (Milaschevitsch) in association with the Ryazanian Most authors studying the biostratigraphy of the Riasanites rjasanensis (Nikitin), and R. cf. swistow Jurassic–Cretaceous boundary beds suggest a hiatus between the Volgian and Ryazanian stages (Casey, 1 This Zone in its modern understanding unites the jacobi Zone 1973; Sasonova, 1977; etc.). This hypothesis is based (previously considered to be terminal for the Tithonian) and the grandis Zone (basal Berriasian Zone) of the standard scale. Tak on sharp differences in the composition of the ammo ing priority into account, the zone in its new definition should nite faunas in the Upper Volgian (the fauna repre have been assigned to the Tithonian, and the Berriasian begun sented solely by craspeditids of Boreal origin, i.e., from the occitanica Zone Craspedites and Garniericeras) and at the beginning of 2 These outcrops have been known in the geological literature for the Ryazanian (where ammonites of Tethyan origin a long time. However Pavlow (1894) and Bogoslowsky (1896) indicated the presence of “Oxynoticeras” subclypeiforme and are found in association with younger craspeditids). Craspedites spp. below beds with Riasanites. For a more detailed The duration of this interval in the Russian Platform is historical review and a scheme showing the locations see Mitta estimated differently, depending on the interpretation (2007). 379 380 MITTA, JINGENG SHA (a) (b) М Bed Stage Surites 1.5 spasskensis 6 Riasanites Valanginian rjasanensis 5 5 Riasanites Rjasanensis 4 swistowianus 4 3 Ryazanian Hectoroceras Ryazanian 3 kochi 2c 2 Kochi Hectoroceras 2b 0.5 tolijense 2a 1 Craspedites milkovensis 1 Volgian Craspedites Volgian Nodiger nodiger Fig. 1. Diagrams showing (a) section of the Jurassic and Cretaceous boundary beds near the village of Kuzminskoe, Ryazan Region and (b) ammonoidbased biostratigraphic scale of the upper part of the Volgian–lower part of the Ryazanian. Explana tion: (1) quartz sand, (2) glauconitic sand, (3) clayey sand, (4) sandstone, and (5) phosphorites. ianus (Nikitin) in a thin (up to 0.3 m) sandstone bed RESULTS AND DISCUSSION (Casey et al., 1977; Mesezhnikov et al., 1979). Sum marizing these results, it was suggested that the lower Lithological Description of the Section zone of the Ryazanian Stage (Riasanites rjasanensis) Several exposures dug 5–6 m apart approximately should be interpreted as a “hyperzone” with three 200 m upstream of a dam, near the village of Kuzmin included zones: (1) rjasanensis/subclypeiforme Zone, skoe on the right bank of the Oka River open the fol with Riasanites spp., Euthymiceras spp., Garniericeras lowing beds (from bottom to top, Fig. 1a): subclypeiforme (Milaschevitsch), Craspedites ex gr. (1) Greenishdarkgray glauconitic sand. Visible kaschpuricus (Trautschold); (2) rjasanensis/kochi thickness 0.35 m. Zone, with Hectoroceras kochi Spath, Schulginites sp., Craspedites ex gr. kaschpuricus (Trautschold), Riasan (2) Indistinctly bedded reddishbrown sandstone, ites spp., Euthymiceras spp.; (3) rjasanensis/spassken ochreous on the weathered surface and black or dark sis Zone, with Surites (Surites) spasskensis (Nikitin), gray on the freshly broken surface. Thickness 0.3 m. S. (Caseyiceras) spp., Externiceras solovaticum (Bog The bed consists of three smaller beds, each 0.1 m thick. oslowsky), Borealites suprasubditus (Bogoslowsky), The lower bed (2a), is strongly ferruginous and almost Riasanites spp., Euthymiceras spp. (Mesezhnikov, completely covered by a continuous iron oxide film on 1984). Taking into account the association of late Vol the freshly broken surface. The bed contains infrequent gian and Ryazanian ammonites, Mesezhnikov con Craspedites ex gr. nodiger (Eichwald)/kaschpuricus cluded that there was no gap between these two stages. (Trautschold) (Pl. 3, figs. 1, 2), and Garniericeras sub However his research, primarily on the taxonomy of clypeiforme (Milaschewitch) (Pl. 3, fig. 3). The middle these ammonites and their description, was not con bed (2b) did not contain fossils. The upper (2c) bed tinued, and in the later papers (Abbink et al., 2001; contained numerous poorly preserved R. swistowianus Wimbledon, 2008) a gap between the Volgian and Rya (Nikitin) (Pl. 3, figs. 5, 6), a few R. cf. rjasanensis zanian stages was still assumed. (Nikitin) and Chetaites sibiricus Schulgina (Pl. 3, fig. 7), and a fragment of Craspedites cf. ultimus sp. nov. In 2006, Russian and Chinese workers undertook joint field work studying the Ryazanian Stage and (3) Brownishgray and brown clayey sand in places underlying beds in the Moscow and Ryazan regions. becoming sandy clay. Thickness 0.0–0.15 m. Repeated collection in the outcrops near the village of (4) Phosphoritic, stained brown and gray sand Kuzminskoe supported the conclusion of Mitta (2006) stoneconglomerate. The fossils are usually poorly about the immediate contact of beds with the Late Vol preserved and are represented by fragments. A few rel gian and Ryazanian ammonites. In this paper we will atively complete specimens of Riasanites rjasanensis discuss these and other recent data. (Pl. 3, fig. 4) were also found. Thickness 0.1–0.35 m. PALEONTOLOGICAL JOURNAL Vol. 45 No. 4 2011 AMMONITE DISTRIBUTION ACROSS THE JURASSIC–CRETACEOUS BOUNDARY 381 (5) Brownishyellow loosely cemented quartz zanian Stage of the Moscow Basin. The morphology sandstone. Thickness 0.15–0.2 m. of the new species suggests such a close relationship (6) Lightcolored and yellow, quartz sand. The vis with the Jurassic C. nodiger, that it removes any doubt ible thickness under the layer of soil is 0.45 m. that there was not a significant gap between the nodiger In bed 1, previous workers (Pavlow, 1894; Bog and rjasanensis zones. oslowsky, 1894, 1896; Mesezhnikov et al., 1979) found The Volgian Craspedites, as noted previously by Kachpurites, Garniericeras catenulatum (Fischer) and Mitta (2010), requires revision. Note that the repre other Late Volgian craspeditids, which indicated the sentatives of this genus in the Upper Substage of the Upper Volgian fulgens Zone (and, possibly, the subditus Volgian Stage of the Russian Platform in fact belong to Zone). the same phylogenetic lineage. The macroconchs of Bed 2a also contains the Upper Volgian fauna Craspedites [C. okensis (auct.) C. subditus (Traut (upper part of the nodiger
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • Non-Invasive Imaging Methods Applied to Neo- and Paleo-Ontological Cephalopod Research
    Biogeosciences, 11, 2721–2739, 2014 www.biogeosciences.net/11/2721/2014/ doi:10.5194/bg-11-2721-2014 © Author(s) 2014. CC Attribution 3.0 License. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research R. Hoffmann1, J. A. Schultz2, R. Schellhorn2, E. Rybacki3, H. Keupp4, S. R. Gerden1, R. Lemanis1, and S. Zachow5 1Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany 2Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany 3Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ Sektion 3.2, Geomechanik und Rheologie, Telegrafenberg, D 429, 14473 Potsdam, Germany 4Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany 5Zuse Institut Berlin, Takustrasse 7, 14195 Berlin, Germany Correspondence to: R. Hoffmann ([email protected]) Received: 28 October 2013 – Published in Biogeosciences Discuss.: 29 November 2013 Revised: 14 March 2014 – Accepted: 29 March 2014 – Published: 22 May 2014 Abstract. Several non-invasive methods are common prac- tially preserved within the surrounding rocks, requires imag- tice in natural sciences today. Here we present how they ing methods that are primarily used in non-destructive test- can be applied and contribute to current topics in cephalo- ing. The conservation of the specimen is of main importance pod (paleo-) biology. Different methods will be compared in using these methods since former techniques used destruc- terms of time necessary to acquire the data, amount of data, tive methods leading to the loss of the specimen or parts accuracy/resolution, minimum/maximum size of objects that of the specimen.
    [Show full text]
  • Materialsbookjurassiccretaceou
    УДК: 551.762.3/763.12 ББК 26.323 The International Scientific Conference on the Jurassic/Cretaceous boundary. September 7-13, 2015, Samara (Russia). – Togliatti: Kassandra, 2015. – 102 p. The present volume compiles short papers with new data on the Jurassic-Cretaceous boundary strata and their fauna of different regions of Russia (Volga region, Siberia, Crimea, Primorye) and of North America. Most papers are devoted to problems of biostratigraphy and paleontology of marine animals and their trace fossils. Besides this, some data on magnetostratigraphy, interregional correlations, history of defining J/K boundary in the Decisions of ISC, and eoomic value of the interval. For geologists, paleontologists, stratigraphers, students of geological and geographical profiles. Responsible editors: E.Yu. Baraboshkin, D.E. Bykov Editorial board: M.A. Rogov, A.Yu. Guzhikov, V.V. Arkadiev, V.V. Gusev, A.A. Konovalova Technical editor: A.P. Ippolitov Layouts: A.P. Ippolitov English translation of papers by V.V. Efimov, I.A. Meleshin, E.L.Vasileva, A.P.Pronin and F.M. Kuanyshev: A.P. Ippolitov Международная научная конференция по проблеме границы юрской и мело- вой систем. 7-13 сентября 2015 г., г.Самара (Россия): Материалы совещания. – Тольятти: Издательство «Кассандра», 2015. – 102 с. В сборнике опубликованы новые данные о пограничных отложениях юры и мела различных регионов России (Поволжье, Сибирь, Крым, Приморье) и Северной Америки. Большинство работ посвящено био- стратиграфии и палеонтологии морских животных и следов их жизнедеятельности. Кроме того, приво- дятся сведения о магнитостратиграфии, межрегиональной корреляции, истории проведения границы юры и мела в постановлениях МСК, и экономической важности этого интервала. Сборник представляет интерес для геологов, палеонтологов, стратиграфов, студентов геологиче- ского и географического факультетов.
    [Show full text]
  • Organic Carbon Isotope Chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada Galloway, JM http://hdl.handle.net/10026.1/15324 10.1017/s0016756819001316 Geological Magazine Cambridge University Press (CUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Proof Delivery Form Geological Magazine Date of delivery: Journal and vol/article ref: geo 1900131 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs Please return the marked proof within 2 days of receipt to: [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made. To avoid delay from overseas, please send the proof by airmail or courier. If you have no corrections to make, please email [email protected] to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.
    [Show full text]
  • Integrating Subsurface and Outcrop Data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in Central Spitsbergen
    NORWEGIAN JOURNAL OF GEOLOGY Vol 98 Nr. 4 https://dx.doi.org/10.17850/njg98-4-01 Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in central Spitsbergen Maayke Jaqueline Koevoets1,2, Øyvind Hammer1, Snorre Olaussen2, Kim Senger2 & Morten Smelror3 1 Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2 Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171, Longyearbyen, Norway. 3 Geological Survey of Norway (NGU), P.O. Box 6315 Torgarden, 7491 Trondheim, Norway. E-mail corresponding author (Øyvind Hammer): [email protected] The Longyearbyen CO2 storage project drilling and coring campaign in central Spitsbergen provided new insights on the shale-dominated Middle Jurassic to Lower Cretaceous Agardhfjellet Formation, which is the onshore counterpart to the Fuglen Formation and the prolific source rocks of the Hekkingen Formation in the Barents Sea. Logs of magnetic susceptibility, organic carbon content, organic carbon isotopes and XRF geochemistry on the cores, together with wireline logs, biostratigraphy and sedimentology, have made it possible to refine the interpretation of the depositional environment and to identify transgressive-regressive (TR) sequences. Several key sequence-stratigraphic surfaces are identified and suggested to be correlative in Central Svalbard, and four of them, although not necessarily chronostratigraphic, also to surfaces in the Barents Sea. Due to the nearly flat-lying thrust faults in the upper décollement zone of the West Spitsbergen Fold and Thrust Belt, there is some concern about the lateral correlation of the sequences within Spitsbergen. However, some of the TR sequence surfaces appear to be of regional importance and are recognised both onshore Svalbard and offshore on the Barents Shelf.
    [Show full text]
  • Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter.
    [Show full text]
  • 9 Paleontological Conference Th
    Polish Academy of Sciences Institute of Paleobiology 9th Paleontological Conference Warszawa, 10–11 October 2008 Abstracts Warszawa Praha Bratislava Edited by Andrzej Pisera, Maria Aleksandra Bitner and Adam T. Halamski Honorary Committee Prof. Oldrich Fatka, Charles University of Prague, Prague Prof. Josef Michalík, Slovak Academy of Sciences, Bratislava Assoc. Prof. Jerzy Nawrocki, Polish Geological Institute, Warszawa Prof. Tadeusz Peryt, Polish Geological Institute, Warszawa Prof. Grzegorz Racki, Institute of Paleobiology, Warszawa Prof. Jerzy Trammer, University of Warsaw, Warszawa Prof. Alfred Uchman, Jagiellonian University, Kraków Martyna Wojciechowska, National Geographic Polska, Warszawa Organizing Committee Dr Maria Aleksandra Bitner (Secretary), Błażej Błażejewski, MSc, Prof. Andrzej Gaździcki, Dr Adam T. Halamski, Assoc. Prof. Anna Kozłowska, Assoc. Prof. Andrzej Pisera Sponsors Institute of Paleobiology, Warszawa Polish Geological Institute, Warszawa National Geographic Polska, Warszawa Precoptic Co., Warszawa Cover picture: Quenstedtoceras henrici Douvillé, 1912 Cover designed by Aleksandra Hołda−Michalska Copyright © Instytut Paleobiologii PAN Nakład 150 egz. Typesetting and Layout: Aleksandra Szmielew Warszawska Drukarnia Naukowa PAN ABSTRACTS Paleotemperature and paleodiet reconstruction on the base of oxygen and carbon isotopes from mammoth tusk dentine and horse teeth enamel during Late Paleolith and Mesolith MARTINA ÁBELOVÁ State Geological Institute of Dionýz Štúr, Mlynská dolina 1, SK−817 04 Bratislava 11, Slovak Republic; [email protected] The use of stable isotopes has proven to be one of the most effective methods in re− constructing paleoenvironments and paleodiet through the upper Pleistocene period (e.g. Fricke et al. 1998; Genoni et al. 1998; Bocherens 2003). This study demonstrates how isotopic data can be employed alongside other forms of evidence to inform on past at great time depths, making it especially relevant to the Palaeolithic where there is a wealth of material potentially available for study.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Late Jurassic Ammonites from Alaska
    Late Jurassic Ammonites From Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Late Jurassic Ammonites From Alaska By RALPH W. IMLAY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Studies of the Late jurassic ammonites of Alaska enables fairly close age determinations and correlations to be made with Upper Jurassic ammonite and stratigraphic sequences elsewhere in the world UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1981 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress catalog-card No. 81-600164 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ----------------------------------------- 1 Ages and correlations -----------------------------­ 19 19 Introduction -------------------------------------- 2 Early to early middle Oxfordian --------------­ Biologic analysis _________________________________ _ 14 Late middle Oxfordian to early late Kimmeridgian 20 Latest Kimmeridgian and early Tithonian _____ _ 21 Biostratigraphic summary ------------------------- 14 Late Tithonian ______________________________ _ 21 ~ortheastern Alaska -------------------------­ 14 Ammonite faunal setting --------------------------­ 22 Wrangell Mountains -------------------------- 15 Geographic distribution ---------------------------- 23 Talkeetna Mountains -------------------------­ 17 Systematic descriptions ___________________________ _ 28 Tuxedni Bay-Iniskin Bay area ----------------- 17 References
    [Show full text]
  • Boreal–Tethyan Biogeographical Ecotone Setting in Europe During Jurassic–Cretaceous Transitional Time on the Base of Mollusca
    BOREAL–TETHYAN BIOGEOGRAPHICAL ECOTONE SETTING IN EUROPE DURING JURASSIC–CRETACEOUS TRANSITIONAL TIME ON THE BASE OF MOLLUSCA. V. A. ZAKHAROV and M. A. ROGOV Geological institute of RAS, Pyzhevskii Lane, 7, 109017 Moscow, Russia Abstract: Mollusca of northern hemisphere in Late Jurassic and most Early Cretaceous were rather distinctly geographically differentiated on boreal, which occurs in the seas, placed, as a rule, to the north of 50 parallels and tethyan inhabited the seas placed usually to the south of 45 parallels. Between these latitudes long time on the certain aquatic areas, being from time to time displaced in space, biogeographical ecotone is settled. Key words: mollusca, biogeographical ecotone, Jurassic/Cretaceous, Europe The new data received per last decade on mollusca mainly from Upper Jurassic and Lower Neocomian sequences of Europe, have allowed more precisely to establish the setting of Boreal-Tethyan ecotone in Late Jurassic and Early Neocomian and to determine a geographical position of southern border of the Boreal-Atlantic Realm (Saks et al., 1971; fig. 1а, b). The new time intervals of moving of associations and separate taxons of tethyan mollusca in Boreal basins and back are established (fig. 2). The migrations (M) with the different intensity was occur during Kimmeridgian up to Valanginian and were restricted by the Boreal-Atlantic Realm in West-European [W-Е] and East Europe [E-Е] provinces. A mollusca: an ammonites, belemnites and bivalves were divided into 4 groups: tethyan and boreal (most numerous groups), subboreal: mostly with the tethyan affinities (they were most typical for ecotones) and Arctic (assumed as extremely boreal).
    [Show full text]
  • Regional Correlation of Jurassic/Cretaceous
    CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive 1 Regional correlation of Jurassic/Cretaceous boundary strata based on the Tithonian to 2 Valanginian dinoflagellate cyst biostratigraphy of the Volga Basin, western Russia 3 4 Ian C. Harding a,*, Giles A. Smith b, James B. Riding c, William A.P. Wimbledon b 5 6 a School of Ocean and Earth Science, University of Southampton, National 7 Oceanography Centre - Southampton, European Way, Southampton SO14 3ZH, United 8 Kingdom 9 b Department of Earth Sciences, University of Bristol, Wills Memorial Building, 10 Queen’s Road, Bristol BS8 1RJ, United Kingdom 11 c British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 12 5GG, United Kingdom 13 14 * Corresponding author. E-mail address: [email protected] (Ian C. Harding). 15 16 17 ABSTRACT 18 19 Precise stratal correlation of Jurassic/Cretaceous boundary successions in the Boreal 20 Province, including the western European and Russian regions, based on ammonite 21 biostratigraphy remain significantly problematical due to widespread faunal 22 provincialism. In order to help clarify this situation, the marine palynology of the 23 Tithonian (uppermost Jurassic) and the Berriasian and Valanginian (Lower Cretaceous) 24 strata exposed on the banks of the River Volga at Gorodishche and Kashpir, near 25 Ul’yanovsk, has been studied in detail. Over 100 dinoflagellate cyst species were 26 recovered, and their ranges used to compile a detailed Tithonian to Valanginian 27 palynostratigraphy for the Volga Basin. First and last appearance datums of key 28 dinoflagellate cyst taxa are used to define ages for unreliably dated strata in the Russian 29 successions by comparison with the stratigraphical ranges of the same taxa calibrated to 30 ammonite zones in Boreal northwest Europe.
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations.
    [Show full text]