Ethnic and Biological Diversity Within the Seaflower Biosphere Reserve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(2007) a Photographic Field Guide to the Reptiles and Amphibians Of
A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species. -
Regional Studies in Marine Science Reef Condition and Protection Of
Regional Studies in Marine Science 32 (2019) 100893 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic ∗ Camilo Cortés-Useche a,b, , Aarón Israel Muñiz-Castillo a, Johanna Calle-Triviño a,b, Roshni Yathiraj c, Jesús Ernesto Arias-González a a Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida B.P. 73 CORDEMEX, C.P. 97310, Mérida, Yucatán, Mexico b Fundación Dominicana de Estudios Marinos FUNDEMAR, Bayahibe, Dominican Republic c ReefWatch Marine Conservation, Bandra West, Mumbai 400050, India article info a b s t r a c t Article history: Changes in structure and function of coral reefs are increasingly significant and few sites in the Received 18 February 2019 Caribbean can tolerate local and global stress factors. Therefore, we assessed coral reef condition Received in revised form 20 September 2019 indicators in reefs within and outside of MPAs in the southeastern Dominican Republic, considering Accepted 15 October 2019 benthic cover as well as the composition, diversity, recruitment, mortality, bleaching, the conservation Available online 18 October 2019 status and evolutionary distinctiveness of coral species. In general, we found that reef condition Keywords: indicators (coral and benthic cover, recruitment, bleaching, and mortality) within the MPAs showed Coral reefs better conditions than in the unprotected area (Boca Chica). Although the comparison between the Caribbean Boca Chica area and the MPAs may present some spatial imbalance, these zones were chosen for Biodiversity the purpose of making a comparison with a previous baseline presented. -
Supplementary Material
Supplementary Material SM1. Post-Processing of Images for Automated Classification Imagery was collected without artificial light and using a fisheye lens to maximise light capture, therefore each image needed to be processed prior annotation in order to balance colour and to minimise the non-linear distortion introduced by the fisheye lens (Figure S1). Initially, colour balance and lenses distortion correction were manually applied on the raw images using Photoshop (Adobe Systems, California, USA). However, in order to optimize the manual post-processing time of thousands of images, more recent images from the Indian Ocean and Pacific Ocean were post- processed using compressed images (jpeg format) and an automatic batch processing in Photoshop and ImageMagick, the latter an open-source software for image processing (www.imagemagick.org). In view of this, the performance of the automated image annotation on images without colour balance was contrasted against images colour balanced using manual post-processing (on raw images) and the automatic batch processing (on jpeg images). For this evaluation, the error metric described in the main text (Materials and Methods) was applied to the images from following regions: the Maldives and the Great Barrier Reef (Figures S2 and S3). We found that the colour balance applied regardless the type of processing (manual vs automatic) had an important beneficial effect on the performance of the automated image annotation as errors were reduced for critical labels in both regions (e.g., Algae labels; Figures S2 and S3). Importantly, no major differences in the performance of the automated annotations were observed between manual and automated adjustments for colour balance. -
Pseudosiderastrea Formosa Sp. Nov. (Cnidaria: Anthozoa: Scleractinia)
Zoological Studies 51(1): 93-98 (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a New Coral Species Endemic to Taiwan Michel Pichon1, Yao-Yang Chuang2,3, and Chaolun Allen Chen2,3,4,* 1Museum of Tropical Queensland, 70-102 Flinders Street, Townsville 4810, Australia 2Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan 3Institute of Oceanography, National Taiwan Univ., Taipei 106, Taiwan 4Institute of Life Science, National Taitung Univ., Taitung 904, Taiwan (Accepted September 1, 2011) Michel Pichon, Yao-Yang Chuang, and Chaolun Allen Chen (2012) Pseudosiderastrea formosa sp. nov. (Cnidaria: Anthozoa: Scleractinia) a new coral species endemic to Taiwan. Zoological Studies 51(1): 93-98. Pseudosiderastrea formosa sp. nov. is a new siderastreid scleractinian coral collected in several localities in Taiwan. It lives on rocky substrates where it forms encrusting colonies. Results of morphological observations and molecular genetic analyses are presented. The new species is described and compared to P. tayamai and Siderastrea savignyana, and its morphological and phylogenic affinities are discussed. http://zoolstud.sinica.edu.tw/Journals/51.1/93.pdf Key words: Pseudosiderastrea formosa sp. nov., New species, Scleractinia, Siderastreid, Western Pacific Ocean. A siderastreid scleractinian coral was Pseudosiderastrea, described as P. formosa sp. collected from several localities around Taiwan nov. and nearby islands, where it is relatively rare. The specimens present some morphological similarities with Pseudosiderastrea tayamai Yabe MATERIAL AND METHODS and Sugiyama, 1935, the only species hitherto known from that genus, and with Siderastrea Specimens were collected by scuba diving at savignyana Milne Edwards and Haime, 1849, Wanlitung (21°59'48"N, 120°42'10"E) and the outlet which is the sole representative in the Indian of the 3rd nuclear power plant (21°55'51.38"N, Ocean of the genus Siderastrea de Blainville, 120°44'46.82"E) on the southeastern coast 1830. -
Coral Species ID
Coral Species ID Colony shape (branching, mound, plates, column, crust, etc) Colony surface (bumpy, smooth, ridges) Polyp/Corallite Size (small, big) Polyp/Corallite shape (round/elliptical, irregular, y- shaped, „ innies vs outies‟ ridge/valley) Polyp color (green, brown, tan, yellow, olive, red) Different Corallite Shapes and Sizes Examples of Massive Stony Corals Montastraea Montastraea Suleimán © W.Harrigan © faveolata cavernosa S. © Diploria strigosa Porites astreoides © M. White© Montastraea faveolata MFAV Small, round polyps Form very large mounds, plates or crusts (to 4-5 m /12-15 ft) © S. ThorntonS. © Montastraea faveolata MFAV Surfaces smooth, ridged, or with bumps aligned in vertical rows © W. Harrigan © M. Weber © R. Steneck Montastraea faveolata MFAV Colonies are flattened, massive- plates with smooth surfaces under conditions of low light. Montastrea annularis MANN How similar to M. faveolata Small polyps Smooth surface How different Colonies are subdivided into numerous mounds or columns with live polyps at their summits. Plates at colony bases under low light conditions. (to 3-4 m/9-12 ft) Which is which? M. annularis M. faveolata MANN MFAV Montastrea franksi MFRA How similar to M. faveolata Small polyps and bumps Close-up How different Some polyps in bumps are larger, irregularly shaped, and may lack zooxanthellae. More aggressive spatial competitor. © P. Humann Montastrea franksi MFRA How similar to M. faveolata Form mounds, short columns, crusts, and/or plates. How different Bumps are scattered over colony surface. (to 3-4 m/9-12 ft) Montastrea franksi MFRA Flattened, massive plate morphology in low light conditions. Solenastrea bournoni SBOU How similar to M. annularis Small round polyps Mounds How different Lighter colors in life, Walls of some polyps are more distinct (“outies”) Bumpy colony surface (to ~1/2 m/<20 in) Solenastrea hyades SHYA How similar to S. -
Energy Budget of the Biosphere and Civilization: Rethinking Environmental Security of Global Renewable and Non-Renewable Resources
ecological complexity 5 (2008) 281–288 available at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/ecocom Viewpoint Energy budget of the biosphere and civilization: Rethinking environmental security of global renewable and non-renewable resources Anastassia M. Makarieva a,b,*, Victor G. Gorshkov a,b, Bai-Lian Li b,c a Theoretical Physics Division, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina, St. Petersburg, Russia b CAU-UCR International Center for Ecology and Sustainability, University of California, Riverside, CA 92521, USA c Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA article info abstract Article history: How much and what kind of energy should the civilization consume, if one aims at Received 28 January 2008 preserving global stability of the environment and climate? Here we quantify and compare Received in revised form the major types of energy fluxes in the biosphere and civilization. 30 April 2008 It is shown that the environmental impact of the civilization consists, in terms of energy, Accepted 13 May 2008 of two major components: the power of direct energy consumption (around 15 Â 1012 W, Published on line 3 August 2008 mostly fossil fuel burning) and the primary productivity power of global ecosystems that are disturbed by anthropogenic activities. This second, conventionally unaccounted, power Keywords: component exceeds the first one by at least several times. Solar power It is commonly assumed that the environmental stability can be preserved if one Hydropower manages to switch to ‘‘clean’’, pollution-free energy resources, with no change in, or Wind power even increasing, the total energy consumption rate of the civilization. -
For-75: an Ecosystem Approach to Natural Resources Management
FOR-75 An Ecosystems Approach to Natural Resources Management Thomas G. Barnes, Extension Wildlife Specialist ur nation—and especially Kentucky—has an The glade cress Oabundance of renewable natural resources, including timber, wildlife, and water. These re- sources have allowed us to build a strong nation and economy, creating one of the highest stan- dards of living in the world. As our nation grew and prospered during the past 200 years, we ex- tracted those natural resources through agricul- ture, forestry, mining, urban or industrial expansion, and other developments. Ultimately, we affected the amount of wild lands that native plants and animals need for survival. In the past, natural resources agencies have ral- The glade cress grows in Jefferson and Bullitt counties lied public support for declining wildlife popula- and nowhere else in the world. tions. In the 1930s, Congress passed the Federal Aid to Wildlife Resto- Table 1. Selected Ecosystem Declines in the ration Act, also called including the bald eagle, brown pelican, peregrine United States the Pittman-Robertson falcon, and American alligator, have recovered % Decline (loss) or Act, and state wildlife from the brink of extinction. However, numerous Ecosystem or Community Degradation agencies received fund- other species and unique habitats are declining, Pacific Northwest Old Growth Forest 90 ing to restore numerous and the list of endangered and threatened organ- Northeastern Pine Barrens 48 wildlife species that isms continues to grow every year. Why are these Tall Grass Prairie 961 were in trouble, includ- additional species in trouble, while other species Palouse Prairie 98 ing white-tailed deer, are increasing their populations and ranges? Where did we go wrong? Why, almost immedi- Blackbelt Prairies 98 wild turkeys, wood ducks, elk, and prong- ately after passage of the Endangered Species Act, Midwestern Oak Savanna 981 horn antelope. -
Biosphere Introduction the Biosphere in Education
10/5/2016 Biosphere Encyclopedia of Earth AUTHOR LOGIN EOE PAGES BROWSE THE EOE Home Article Tools: Titles (AZ) About the EoE Authors Editorial Board Biosphere Topics International Advisory Board Topic Editors FAQs Lead Author: Erle Ellis (other articles) Content Partners EoE for Educators Article Topic: Geography Content Sources Contribute to the EoE This article has been reviewed and approved by the following Topic Editor: Leszek A. eBooks Bledzki (other articles) Support the EoE Classics Last Updated: January 8, 2009 Contact the EoE Collections Find Us Here RSS Reviews Table of Contents Awards and Honors Introduction 1 Introduction The biosphere is the biological component of earth systems, which 1.1 History of the Biosphere also include the lithosphere, hydrosphere, atmosphere and other Concept 2 The Biosphere in Education "spheres" (e.g. cryosphere, anthrosphere, etc.). The biosphere 3 Biosphere Research includes all living organisms on earth, together with the dead organic 4 The Future of the Biosphere matter produced by them. 5 More About the Biosphere 6 Further Reading The biosphere concept is common to many scientific disciplines including astronomy, SOLUTIONS JOURNAL geophysics, geology, hydrology, biogeography and evolution, and is a core concept in ecology, earth science and physical geography. A key component of earth systems, the biosphere interacts with and exchanges matter and energy with the other spheres, helping to drive the global biogeochemical cycling of carbon, nitrogen, phosphorus, sulfur and other elements. From an ecological point of view, the biosphere is the "global ecosystem", comprising the totality of biodiversity on earth and performing all manner of biological functions, including photosynthesis, respiration, decomposition, nitrogen fixation and denitrification. -
Boa Constrictor Latin Name
Common name :- Boa Constrictor Latin name :- Boa constrictor spp Size :- Average 6'- 8' Distribution :- Central and South America Natural habitat :- Rain forests and wooded areas. Description :- A chunky constrictor variable in colour, usually with tan or brown saddles on the body and often with an orange or red tail. Enclosure size :- The smallest vivarium we would recommend for one small adult boa would be 4'x 18"x 18". Multiple boas or large specimens may well require a enclosure up to 6'x 2' x 2'. Heating and temperature :- An air type heater is important for boas, for example a red bulb, ceramic heater, power plate or tubular heater all of which should ideally be connected with a thermostat. All of these heat sources MUST be guarded to protect the snake from burns. Heat mats can cause problems if used incorrectly with these animals, although they may be used in certain circumstances, but please ask for information. Hot spot temperature should be 35c / 95f, Humidity :- Standard household humidity in the UK is approximately 50% which is suitable for these snakes, When shedding a light spray daily will assist. Substrate and decoration :- We would suggest bark chip as a substrate as this helps to maintain some humidity, is easy to spot clean and is very aesthetically pleasing. Other decoration can include sturdy branches and large pieces of cork bark as retreats, plastic plants can be used to improve the visual effect. Feeding and supplements :- Whole rodents, usually mice for babies, rats for larger boas and possibly rabbits for larger boas are ideal food. -
Man O War Shoal Marine Park the Kingdom of the Netherlands
UNITED EP NATIONS United Nations Environment Original: ENGLISH Program Proposed areas for inclusion in the SPAW list ANNOTATED FORMAT FOR PRESENTATION REPORT FOR: Man O War Shoal Marine Park The Kingdom of the Netherlands Date when making the proposal : 9/2/14 CRITERIA SATISFIED : Ecological criteria Cultural and socio-economic criterias Representativeness Productivity Conservation value Cultural and traditional use Rarity Socio-economic benefits Naturalness Critical habitats Diversity Connectivity/coherence Resilience Area name: Man O War Shoal Marine Park Country: The Kingdom of the Netherlands Contacts Last name: BERVOETS First name: Tadzio Focal Point Position: Focal Point Email: [email protected] Phone: (599) 544-4267 Last name: MacRae First name: Duncan Manager Position: Director , Coastal Zone Management (UK) Email: [email protected] Phone: 00 44 (0) 7958230076 SUMMARY Chapter 1 - IDENTIFICATION Chapter 2 - EXECUTIVE SUMMARY Chapter 3 - SITE DESCRIPTION Chapter 4 - ECOLOGICAL CRITERIA Chapter 5 - CULTURAL AND SOCIO-ECONOMIC CRITERIA Chapter 6 - MANAGEMENT Chapter 7 - MONITORING AND EVALUATION Chapter 8 - STAKEHOLDERS Chapter 9 - IMPLEMENTATION MECHANISM Chapter 10 - OTHER RELEVANT INFORMATION ANNEXED DOCUMENTS 7 - Lagoon2013.pdf 6 - Water Quality Testing december 2013.pdf 5 - Working Paper Economic Valuation SXM Reefs.pdf 4 - Report SepOct2013.pdf 3 - St Maarten Proposed Land Parks Management Plan 2009.pdf 1 - Man of War Shoal Marine Park Management Plan 2011.pdf 2 - St Maarten Marine Park Management Plan 2007.pdf 8 - climate change.pdf 9 - Mullet Pond report.pdf 10 - Tilapia Report (2).pdf 11 - Press Release Man of War Shoal Marine Park.pdf Chapter 1. IDENTIFICATION a - Country: The Kingdom of the Netherlands b - Name of the area: Man O War Shoal Marine Park c - Administrative region: St. -
Reproduction and Population of Porites Divaricata at Rodriguez Key: the Lorf Ida Keys, USA John Mcdermond Nova Southeastern University, [email protected]
Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 1-1-2014 Reproduction and Population of Porites divaricata at Rodriguez Key: The lorF ida Keys, USA John McDermond Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography Commons Share Feedback About This Item NSUWorks Citation John McDermond. 2014. Reproduction and Population of Porites divaricata at Rodriguez Key: The Florida Keys, USA. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (17) https://nsuworks.nova.edu/occ_stuetd/17. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER Reproduction and Population of Porites divaricata at Rodriguez Key: The Florida Keys, USA By: John McDermond Submitted to the faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in Marine Biology Nova Southeastern University i Thesis of John McDermond Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center Major Professor: __________________________________ -
Fish and Coral Species Lists Compiled by Coral Cay Conservation: Belize 1990-1998
FISH AND CORAL SPECIES LISTS COMPILED BY CORAL CAY CONSERVATION: BELIZE 1990-1998 - Edited by - Alastair Harborne, Marine Science Co-ordinator September 2000 CORAL CAY CONSERVATION LTD The Tower, 125 High St., Colliers Wood, London SW19 2JG TEL: +44 (0)20 8545 7721 FAX: +44 (0)870 750 0667 Email: [email protected] www: http://www.coralcay.org/ This report is part of a series of working documents detailing CCC’s science programme on Turneffe Atoll (1994-1998). The series is also available on CD-Rom. CCC fish and coral species lists 1. INTRODUCTION Between 1986 and 1998, Coral Cay Conservation (CCC) provided data and technical assistance to the Belize Department of Fisheries, Coastal Zone Management Unit and Coastal Zone Management Project under the remit of a Memorandum of Understanding. This work has provided data for seven proposed or established marine protected areas at South Water Cay, Bacalar Chico, Sapodilla Cays, Snake Cays, Laughing Bird Cay, Caye Caulker and Turneffe Atoll (Figure 1). These projects have generally provided habitat maps, the associated databases and management recommendations to assist reserve planning. In addition to the data collection, training, capacity building and environmental education undertaken by CCC, the expeditions have also provided opportunities for compiling presence / absence species lists of fish and corals in the different project areas. This document contains the fish list compiled by CCC staff and experienced volunteers and a reprint of Fenner (1999) detailing coral taxonomy in Belize and Cozumel, the Belize component of which was compiled while the author was working as a member of CCC’s field science staff.