The ELODIE Survey for Northern Extra-Solar Planets IV. HD196885, A

Total Page:16

File Type:pdf, Size:1020Kb

The ELODIE Survey for Northern Extra-Solar Planets IV. HD196885, A Astronomy & Astrophysics manuscript no. hd196885 c ESO 2018 December 2, 2018 The ELODIE survey for northern extra-solar planets IV. HD 196885, a close binary star with a 3.7-year planet A.C.M. Correia1,2, S. Udry2, M. Mayor2, A. Eggenberger3,2, D. Naef4, J.-L. Beuzit3, C. Perrier3, D. Queloz2, J.-P. Sivan5, F. Pepe5, N.C. Santos6,2, and D. S´egransan5 1 Departamento de F´ısica da Universidade de Aveiro, Campus Universit´ario de Santiago, 3810-193 Aveiro, Portugal 2 Observatoire de Gen`eve, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 3 Laboratoire d’Astrophysique de Grenoble, Universit´eJoseph Fourier, BP 53, 38041 Grenoble Cedex 9, France 4 European Southern Observatory, Casilla 19001, Santiago 19, Chile 5 Laboratoire d’Astrophysique de Marseille, Traverse du Siphon BP 8, 13376 Marseille Cedex 12, France 6 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal Received 01 October, 2006; accepted ?? ABSTRACT Aims. We aim significantly increase the number of detected extra-solar planets in a magnitude-limited sample to improve our knowl- edge of their orbital elements distributions and thus obtain better constraints for planet-formation models. Methods. Radial-velocity data were taken at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spectrograph. Results. We report the presence of a planet orbiting HD 196885 A, with an orbital period of 1349 days. This star was previously sug- gested to host a 386-day planet, but we cannot confirm its existence. We also detect the presence of a stellar companion, HD 196885 B, and give some constraints on its orbit. Key words. stars: individual: HD 196885 A – stars: individual: HD 196885 B – stars: binaries: visual – stars: planetary systems – techniques: radial velocities – methods: observational 1. Introduction ties with the two detected companionsare described in Sect. 3.In Sect. 4 we discuss the possibility of the existence of more com- The ELODIE Planet Search Survey was an extensive radial- panions, in particular with orbital periods around 368 days. Last velocity northern survey of dwarf stars at the Haute-Provence section is devoted to our conclusions. Observatory (OHP, France) using the ELODIE high-precision fiber-fed echelle spectrograph (Baranne et al. 1996) mounted at the Cassegrain focus of the 1.93-mtelescope.It started to operate 2. HD 196885 A stellar characteristics at the end of 1993 and acquired data until the summer of 2006, when it was replaced by the new echelle spectrograph SOPHIE HD 196885A was observed by the HIPPARCOS astrometric (Bouchy & The Sophie Team 2006). satellite (HIP 101966). A high-precision spectroscopic study of This survey is part of a large effort aimed at an extra-solar this star was also performed by Sousa et al. (2006) in order to planet search through radial-velocity measurements, in order to examine the metallicity distribution of stars hosting planets. This characterize the types of exoplanets and to bring strong con- star was also studied by near-infrared survey with adaptive op- straints on their processes of formation and evolution. ELODIE tics of faint circumstellar environments, sensitive to compan- was responsible for finding many extra-solar planets, among ions within the stellar and the sub-stellar domains (Chauvin et al. them the first hot Jupiter, 51Pegb (Mayor & Queloz 1995). The 2006, 2007). Observed and inferred stellar parameters from arXiv:0711.3343v2 [astro-ph] 22 Dec 2016 original sample consisted of 142 stars, but a new sample of 330 these different sources are summarized in Table1. stars was defined in 1997. Details of the program and the sur- In the HIPPARCOS catalogue, HD 196885A is given a spec- veyed sample can be found in Perrier et al. (2003). tral type F8 IV, a visual magnitude V = 6.398 and a color in- In this paper we present the detection of two bodies around dex B − V = 0.559. The measured parallax (30.31 ± 0.81 mas) the star HD 196885A, one in the mass range of planets and the leads to a distance of 33.0 ± 0.9 pc and an absolute magnitude other believed to be a stellar companion.This star was previously of MV = 3.8 ± 0.1. From CORALIE spectra, Sousa et al. (2006) described to harbor a planet with a period of about 386 days (al- derived an effective temperature Teff = 6340±39K, a gravitylog though no published reference is known), but we could not con- g = 4.46 ± 0.02 and a high metal content [Fe/H] = 0.29 ± 0.05 firm its presence in our observations(our analysis shows a planet (Table1). The bolometric correction (BC = −0.006)is computed with an orbital period of about 1349 days instead). The stellar from Flower (1996) using the spectroscopic Teff determination. companion was also recently observed using NACO adaptative The bolometric magnitudeis then MBol = 3.791, which allows us optics by Chauvin et al. (2006, 2007). The stellar properties of to derive a stellar luminosity of L = 2.40 L⊙. Sousa et al. (2006) HD 196885A are briefly recalled in Sect.2 and the radial veloci- also computed the mass, M = 1.33 M⊙, from evolutionary tracks using Genevamodels(Schaller et al. 1992; Schaerer et al. 1993). Send offprint requests to: A.C.M. Correia, e-mail: [email protected] From the B − V value and ELODIE correlation functions we 2 A.C.M. Correia et al.: HD 196885, a close binary star with a 3.7-year planet Table 1. Observed and inferred stellar parameters for HD 196885A ELODIE + CORALIE -30.1 HD 196885A. ELODIE -30.15 CORALIE -30.2 Parameter HD 196885 A -30.25 Spectral Type F8 V -30.3 V 6.398 -30.35 B − V 0.559 ± 0.006 π [mas] 30.31 ± 0.81 -30.4 d [pc] 33.0 ± 0.9 Radial velocity [km/s] -30.45 M 3.8 ± 0.1 V -30.5 BC −0.006 -30.55 MBol 3.79 L [L⊙] 2.40 0.08 0.06 [Fe/H] 0.29 ± 0.05 0.04 ′ 0.02 log RHK −5.01 0 -0.02 Prot. [days] 15. O-C [km/s] -0.04 M [M⊙] 1.33 -0.06 ± -0.08 Teff [K] 6340 39 50500 51000 51500 52000 52500 53000 53500 54000 log g [cgs] 4.46 ± 0.02 JD-2400000 [days] v sin i [km/s] 7.3 ± 1.5 age [Gyr] 2.0 ± 0.5 Fig. 1. ELODIE and CORALIE radial velocities for HD 196885A, superimposed on a two-Keplerian orbital solution (Table 2). Photometric and spectral type are from Chauvin et al. (2006). Astrometric parameters are from HIPPARCOS (ESA 1997). The mass M and the atmospheric parameters Teff, log g and [Fe/H] are from Sousa et al. (2006). The bolometric correction is computed from Flower a series of radial velocity measurements were also taken using (1996) using the spectroscopic Teff determination. The activity level and the CORALIE echelle spectrograph(Queloz et al. 2000) mounted the rotation period are from Wright et al. (2004). The given age was ob- on the 1.2-m Swiss telescope at La Silla. This four year obser- tained following the Bayesian approach of Pont & Eyer (2004). vational sequence is important to confirm the presence of the planetary companion, since the precision of CORALIE is slightly find v sin i = 7.3 ± 1.5 [km/s], meaning that the star is ro- better than the precision of ELODIE. tating fast. However, its measured activity level is very weak: With 111 radial-velocity measurements (69 from ELODIE,9 ′ from CORAVEL and 33 from CORALIE), spanning ∼14 years of log RHK = −5.01 (Wright et al. 2004). From this value, these authors inferred a rotation period of about 15 days. According observations, we are able to describe the orbit of the sub-stellar to Pace & Pasquini (2004), the activity level becomes weak and body in the system, as well as slightly constrain the orbit of constant after ∼1.5 Gyr, setting a lower limit on the age of the the stellar companion. Using the iterative Levenberg-Marquardt star. On the other hand, following the Bayesian approach de- method (Press et al. 1992), we first attempt to fit the complete scribed in Pont & Eyer (2004) we estimate a maximum age of set of radial velocities with a single orbiting companion and 2.5 Gy. The derived stellar atmospheric parameters and age are a quadratic drift. This fit yields a planetary companion with compatible with the expected values for a high metallicity late- P = 1347days, e = 0.44, a minimum mass of 2.9 MJup and F dwarf (F8 V), and are slightly at odds with the evolutionary an adjustment of pχ2 = 1.811 and rms = 14.61m/s. We then status given by the HIPPARCOS catalogue. fit the radial velocities using a model with two Keplerian orbits (Figs.1 and 2). It yields for the inner planet P = 1349 days, e = 0.46 and a minimum mass of 3.0 MJup, while for the outer 3. Orbital solutions for the HD 196885 system companion we have P ≃ 20000 days, e = 0.41 and a minimum The ELODIE observations of HD 196885A started in June 1997 mass of 0.34 M⊙ (Table 2). Despite all the uncertainties in the and the last data acquired are from August 2006, since the orbital parameters, the use of a Keplerian orbit for the massive ELODIE program was closed shortly after that date. The peculiar outer body in the system proved to be a good approach, better variations of the radial velocities (Fig.1) and also non-confirmed than the quadratic drift, since the reduced pχ2 is now 1.494 and announcements from other research teams (see section 4), pre- the velocity residuals drop to rms = 11.87m/s (Fig.2).
Recommended publications
  • Stability of Planets in Binary Star Systems
    StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
    APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass.
    [Show full text]
  • Extrasolar Planets in Stellar Multiple Systems
    Astronomy & Astrophysics manuscript no. exoplanets˙binaries˙final˙rn © ESO 2012 April 24, 2012 Extrasolar planets in stellar multiple systems T. Roell1, R. Neuh¨auser1, A. Seifahrt1,2,3, and M. Mugrauer1 1 Astrophysical Institute and University Observatory Jena, Schillerg¨aßchen 2, 07745 Jena, Germany e-mail: [email protected] 2 Physics Department, University of California, Davis, CA 95616, USA 3 Department of Astronomy and Astrophysics, University of Chicago, IL 60637, USA Received ...; accepted ... ABSTRACT Aims. Analyzing exoplanets detected by radial velocity (RV) or transit observations, we determine the multiplicity of exoplanet host stars in order to study the influence of a stellar companion on the properties of planet candidates. Methods. Matching the host stars of exoplanet candidates detected by radial velocity or transit observations with online multiplicity catalogs in addition to a literature search, 57 exoplanet host stars are identified having a stellar companion. Results. The resulting multiplicity rate of at least 12 % for exoplanet host stars is about four times smaller than the multiplicity of solar like stars in general. The mass and the number of planets in stellar multiple systems depend on the separation between their host star and its nearest stellar companion, e.g. the planetary mass decreases with an increasing stellar separation. We present an updated overview of exoplanet candidates in stellar multiple systems, including 15 new systems (compared to the latest summary from 2009). Key words. extrasolar planets – stellar multiple systems – planet formation 1. Introduction in Mugrauer & Neuh¨auser (2009), these studies found 44 stel- lar companions around stars previously not known to be mul- More than 700 extrasolar planet (exoplanet) candidates were dis- tiple, which results in a multiplicity rate of about 17 %, while covered so far (Schneider et al.
    [Show full text]
  • Planet Formation in Evolved Binary Stars Nader Haghighipour (Ifa,Hawaii) Tobias Müller (Inst
    Planet Formation in Evolved Binary Stars Nader Haghighipour (IfA,Hawaii) Tobias Müller (Inst. Astron. & Astrophys., Tübingen) Billy Quarles (NASA Ames) http://www.boulder.swri.edu/~terrell/dtart.htm α Centauri Kepler 47 Observations imply planets in binaries Circumbinary Disk Circumprimary Disk GG Tau (a = 35 AU) HD 141569 Mdisk = 0.2 Solar-mass separation ~950 AU Krist et al. 2005 Clampin et al. 2003 Slightly more than 10% of Extrasolar Planets are in Binary Star Systems http://www.univie.ac.at/adg/schwarz/binary.html (Haghighipour 2006) S t a r S t a r S t a r S t a r HD142 (GJ 9002) HD3651 HD9826 (UpsilonA n d ) HD13445 (GJ 86) HD19994 HD22049 (EpsilonE r i ) HD27442 HD40979 HD41004 HD75732 (55 Cnc) HD80606 HD89744 HD114762 HD 117176 (70 Vir) HD120136 (TauB o o ) HD121504 HD137759 HD143761 (RhoC r b ) HD178911 HD186472 (16 Cyg) HD190360 (GJ 777 A) HD192263 HD195019 HD213240 HD217107 HD219449 HD219542 HD222404 (GammaC e p h e i ) HD178911 PSR B1257-20 PSR B1620-26 γ Cephei : Separation ~ 20 AU 1.67 Jupiter-Mass Planet @ 2.1 AU GL 86 : Separation ~ 28 AU 4 Jupiter-Mass Planet @ 0.11 AU HD41004, HD 196885, HD 176051, α Centauri (?) (23 AU) (23 AU) (21 AU) (23.5 AU) OGLE-2013-BLG-0341 (15 AU) Planetary Dynamics in Binary Stars Deprit and Rom (1970) Heppenheimer (1974, 1978) Ziglin (1975) Harrington (1975, 1977) Drobyshevski (1978), Diakov and Reznikov (1980), Black (1982) Pendleton (1983) Whitmire et al. (1998) Dvorak (1984, 1986, 1988, 1989, 1991) Benest (1988, 1989, 1993, 1996, 1998) Observations imply planets can form in binary star system 10 AU Core of star forming region L1551 contains two disks separated by ~ 45 AU.
    [Show full text]
  • Planet Formation in Binaries 3
    Noname manuscript No. (will be inserted by the editor) Planet formation in Binaries P. Thebault · N. Haghighipour the date of receipt and acceptance should be inserted later Abstract Spurred by the discovery of more than 60 exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation re- search. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain as- pects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in par- ticular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the ”standard” planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habit- ability, for which the binary environment creates a complex situation because of the presence of two irradiation sources of varying distance. Keywords Planetary systems · Binary Stars 1 Introduction About half of solar-type stars reside in multiple stellar systems (Raghavan et al., 2010). As a consequence, one of the most generic environments to be considered for studying planet formation should in principle be that of a binary.
    [Show full text]
  • Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
    Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes.
    [Show full text]
  • Annual Report 2007 ESO
    ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2007 ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2007 presented to the Council by the Director General Prof. Tim de Zeeuw ESO is the pre-eminent intergovernmental science and technology organisation in the field of ground-based astronomy. It is supported by 13 countries: Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Further coun- tries have expressed interest in member- ship. Created in 1962, ESO provides state-of- the-art research facilities to European as- tronomers. In pursuit of this task, ESO’s activities cover a wide spectrum including the design and construction of world- class ground-based observational facili- ties for the member-state scientists, large telescope projects, design of inno- vative scientific instruments, developing new and advanced technologies, further- La Silla. ing European cooperation and carrying out European educational programmes. One of the most exciting features of the In 2007, about 1900 proposals were VLT is the possibility to use it as a giant made for the use of ESO telescopes and ESO operates the La Silla Paranal Ob- optical interferometer (VLT Interferometer more than 700 peer-reviewed papers servatory at several sites in the Atacama or VLTI). This is done by combining the based on data from ESO telescopes were Desert region of Chile. The first site is light from several of the telescopes, al- published. La Silla, a 2 400 m high mountain 600 km lowing astronomers to observe up to north of Santiago de Chile.
    [Show full text]
  • Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
    A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Properties of Planets in Binary Systems the Role of Binary Separation
    A&A 462, 345–353 (2007) Astronomy DOI: 10.1051/0004-6361:20066319 & c ESO 2007 Astrophysics Properties of planets in binary systems The role of binary separation S. Desidera1 and M. Barbieri1,2 1 INAF – Osservatorio Astronomico di Padova, Vicolo dell’ Osservatorio 5, 35122 Padova, Italy e-mail: [email protected] 2 Dipartimento di Fisica, Università di Padova, Italy Received 29 August 2006 / Accepted 1 October 2006 ABSTRACT Aims. The statistical properties of planets in binaries were investigated. Any difference to planets orbiting single stars can shed light on the formation and evolution of planetary systems. As planets were found around components of binaries with very different separation and mass ratio, it is particularly important to study the characteristics of planets as a function of the effective gravitational influence of the companion. Methods. A compilation of planets in binary systems was made; a search for companions orbiting stars recently shown to host planets was performed, resulting in the addition of two further binary planet hosts (HD 20782 and HD 109749). The probable original properties of the three binary planet hosts with white dwarfs companions were also investigated. Using this updated sample of planets in binaries we performed a statistical analysis of the distributions of planet mass, period, and eccentricity, fraction of multiplanet systems, and stellar metallicity for planets orbiting components of tight and wide binaries and single stars. Results. The only highly significant difference revealed by our analysis concerns the mass distribution of short-period planets. Massive planets in short period orbits are found in most cases around the components of rather tight binaries.
    [Show full text]