Substrate and Drug Binding Sites in Leut Ajeeta Nyola1, Nathan K Karpowich1, Juan Zhen2, Jennifer Marden1, Maarten E Reith2 and Da-Neng Wang1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antinociceptive Effects of Monoamine Reuptake Inhibitors in Assays of Pain-Stimulated and Pain-Depressed Behaviors
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Antinociceptive Effects of Monoamine Reuptake Inhibitors in Assays of Pain-Stimulated and Pain-Depressed Behaviors Marisa Rosenberg Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2715 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ANTINOCICEPTIVE EFFECTS OF MONOAMINE REUPTAKE INHIBITORS IN ASSAYS OF PAIN-STIMULATED AND PAIN-DEPRESSED BEHAVIOR A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By Marisa B. Rosenberg Bachelor of Science, Temple University, 2008 Advisor: Sidney Stevens Negus, Ph.D. Professor, Department of Pharmacology/Toxicology Virginia Commonwealth University Richmond, VA May, 2012 Acknowledgement First and foremost, I’d like to thank my advisor Dr. Steven Negus, whose unwavering support, guidance and patience throughout my graduate career has helped me become the scientist I am today. His dedication to education, learning and the scientific process has instilled in me a quest for knowledge that I will continue to pursue in life. His thoroughness, attention to detail and understanding of pharmacology has been exemplary to a young person like me just starting out in the field of science. I’d also like to thank all of my committee members (Drs. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
(19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes. -
Monoamine Reuptake Inhibitors in Parkinson's Disease
Hindawi Publishing Corporation Parkinson’s Disease Volume 2015, Article ID 609428, 71 pages http://dx.doi.org/10.1155/2015/609428 Review Article Monoamine Reuptake Inhibitors in Parkinson’s Disease Philippe Huot,1,2,3 Susan H. Fox,1,2 and Jonathan M. Brotchie1 1 Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8 2Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399BathurstStreet,Toronto,ON,CanadaM5T2S8 3Department of Pharmacology and Division of Neurology, Faculty of Medicine, UniversitedeMontr´ eal´ and Centre Hospitalier de l’UniversitedeMontr´ eal,´ Montreal,´ QC, Canada Correspondence should be addressed to Jonathan M. Brotchie; [email protected] Received 19 September 2014; Accepted 26 December 2014 Academic Editor: Maral M. Mouradian Copyright © 2015 Philippe Huot et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The motor manifestations of Parkinson’s disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. -
Mechanism of Action of Antidepressants and Mood Stabilizers
79 MECHANISM OF ACTION OF ANTIDEPRESSANTS AND MOOD STABILIZERS ROBERT H. LENOX ALAN FRAZER Bipolar disorder (BPD), the province of mood stabilizers, the more recent understanding that antidepressants share has long been considered a recurrent disorder. For more this property in UPD have focused research on long-term than 50 years, lithium, the prototypal mood stabilizer, has events, such as alterations in gene expression and neuroplas- been known to be effective not only in acute mania but ticity, that may play a significant role in stabilizing the clini- also in the prophylaxis of recurrent episodes of mania and cal course of an illness. In our view, behavioral improvement depression. By contrast, the preponderance of past research and stabilization stem from the acute pharmacologic effects in depression has focused on the major depressive episode of antidepressants and mood stabilizers; thus, both the acute and its acute treatment. It is only relatively recently that and longer-term pharmacologic effects of both classes of investigators have begun to address the recurrent nature of drugs are emphasized in this chapter. unipolar disorder (UPD) and the prophylactic use of long- term antidepressant treatment. Thus, it is timely that we address in a single chapter the most promising research rele- vant to the pharmacodynamics of both mood stabilizers and MOOD STABILIZERS antidepressants. As we have outlined in Fig. 79.1, it is possible to charac- The term mood stabilizer within the clinical setting is com- terize both the course and treatment of bipolar and unipolar monly used to refer to a class of drugs that treat BPD. -
Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters
1521-0103/359/1/159–170$25.00 http://dx.doi.org/10.1124/jpet.116.235838 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:159–170, October 2016 U.S. Government work not protected by U.S. copyright Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters Adem Can,1 Panos Zanos,1 Ruin Moaddel, Hye Jin Kang, Katinia S. S. Dossou, Irving W. Wainer, Joseph F. Cheer, Douglas O. Frost, Xi-Ping Huang, and Todd D. Gould Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.) Received June 14, 2016; accepted July 27, 2016 ABSTRACT Following administration at subanesthetic doses, (R,S)-ketamine mesolimbic DA release and decay using fast-scan cyclic (ketamine) induces rapid and robust relief from symptoms of voltammetry following acute administration of subanesthetic depression in treatment-refractory depressed patients. Previous doses of ketamine (2, 10, and 50 mg/kg, i.p.). -
Pharmaceutical Appendix to the Harmonized Tariff Schedule
Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Review Article Monoamine Reuptake Inhibitors in Parkinson's Disease
Review Article Monoamine Reuptake Inhibitors in Parkinson’s Disease Philippe Huot,1,2,3 Susan H. Fox,1,2 and Jonathan M. Brotchie1 1 Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8 2Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399BathurstStreet,Toronto,ON,CanadaM5T2S8 3Department of Pharmacology and Division of Neurology, Faculty of Medicine, UniversitedeMontr´ eal´ and Centre Hospitalier de l’UniversitedeMontr´ eal,´ Montreal,´ QC, Canada Correspondence should be addressed to Jonathan M. Brotchie; [email protected] Received 19 September 2014; Accepted 26 December 2014 Academic Editor: Maral M. Mouradian Copyright © 2015 Philippe Huot et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The motor manifestations of Parkinson’s disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review -
Lääkeaineiden Yleisnimet (INN-Nimet) 21.6.2021
Lääkealan turvallisuus- ja kehittämiskeskus Säkerhets- och utvecklingscentret för läkemedelsområdet Finnish Medicines Agency Lääkeaineiden yleisnimet (INN-nimet) 21.6. -
PRODUCT INFORMATION Nisoxetine (Hydrochloride) Item No
PRODUCT INFORMATION Nisoxetine (hydrochloride) Item No. 29637 CAS Registry No.: 57754-86-6 Formal Name: γ-(2-methoxyphenoxy)-N- methyl-benzenepropanamine, monohydrochloride Synonyms: Lilly 94939, NSC 298819 MF: C17H21NO2 • HCl FW: 307.8 N O Purity: ≥98% • HCl Supplied as: A crystalline solid H O Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Nisoxetine (hydrochloride) is supplied as a crystalline solid. A stock solution may be made by dissolving the nisoxetine (hydrochloride) in the solvent of choice, which should be purged with an inert gas. Nisoxetine (hydrochloride) is soluble in organic solvents such as ethanol. It is also soluble in water. The solubility of nisoxetine (hydrochloride) in ethanol and water is approximately 50 and 20 mg/ml, respectively. We do not recommend storing the aqueous solution for more than one day. Description 1 Nisoxetine is a norepinephrine transporter (NET) inhibitor (Ki = 5.1 nM). It is selective for NET over the dopamine transporter (DAT) and the serotonin (5-HT) transporter (SERT; Kis = 477 and 383 nM, respectively). Nisoxetine inhibits norepinephrine uptake and inhibits amphetamine-induced increases in 2 norepinephrine release in mouse brain (EC50s = 2.97 and 0.08 µM, respectively). It reduces increases in locomotor activity induced by d-N-ethylamphetamine, methylphenidate, and cocaine, but not morphine, in mice when administered at a dose of 32 mg/kg.3 Nisoxetine (0.5 mg/kg i.v.) also reduces cataplexy in narcoleptic dogs.4 References 1. Torres, G.E., Gainetdinov, R.R., and Caron, M.G. -
Screening of Functional Norepinephrine Transporter Insensitive to Cocaine Inhibition and Generation of Knock-In Mouse
SCREENING OF FUNCTIONAL NOREPINEPHRINE TRANSPORTER INSENSITIVE TO COCAINE INHIBITION AND GENERATION OF KNOCK-IN MOUSE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Hua Wei, M.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Howard Haogang Gu, PhD, Advisor ___________________________ Lane Jackson Wallace, PhD Advisor Michael Xi Zhu, PhD Biochemistry Graduate Program James Willam Dewille, PhD ABSTRACT This dissertation consists of three parts. The first part explores the possibility of screening a functional but cocaine insensitive norepinephrine transporter and generation of a cocaine insensitive knock-in mouse line, the second part attempts to identify residues in mouse norepinephrine transporter (NET) transmembrane domain 3 (TMD3) that would differentiate norepinephrine and dopamine uptake, while the third part discusses that two extracellular cysteines in dopamine transporter form a disulfide bond, which is vital for the transporter’s function. Cocaine blocks dopamine transporter (DAT), NET and serotonin transporters (SERT) in the brain and increases extracellular neurotransmitter concentration in various brain regions. It is not known how each of these contributes to complex cocaine addictive effects. Genetically modified mice with a single one of these transporter removed still prefer cocaine, suggesting that none of them is absolutely required for cocaine rewarding effect. We have generated one unique knock-in mouse line, carrying a cocaine insensitive DAT. This mouse line does not show cocaine preference when given cocaine, which showed that DAT is necessary for cocaine rewarding effects. However, how NET is involved in cocaine addictive effect is still unknown. -
Medical Guidelines Important Medical Precautions
Safety at the Ceremonies & Medical Guidelines Important Medical Precautions Ricardo has many years of experience in holding medicine events and knows the safe use of Ayahuasca in its traditional context. Please note that in certain cases working with Ayahuasca can carry health risks: if you have any heart, liver or kidney, or other serious medical problems, you should inform us at the first opportunity, and discuss the issues with a doctor who is aware of the issues Ayahuasca may raise. Our priority is your safety and well-being, within the events guiding you to personal healing and growth. We will provide the most secure environment to work with Ayahuasca we possibly can, and will ensure your welfare as best we can at all time. In return we ask that you behave responsibly and do not endanger yourself or others. It is necessary that you agree to disclose, in confidence, any known medical conditions and/or use of any medication, at the time of booking. By coming to the medicine event, you are declaring that you are in a physical and mental condition appropriate to the activities described in the dietary and medical guidelines, and agree that you participate at your own risk and that we cannot accept liability for any accident or injury. Certain drugs and medications have been found to not be compatible with Ayahuasca. It is essential to stop taking the following substances, and give your system sufficient time to remove them from the body, before you begin a workshop. Please consult your doctor if you are in any doubt: you certainly should not suddenly stop taking prescribed medications (including antidepressants) without consulting your doctor.