Heritage and Early History of the Boundary Element Method

Total Page:16

File Type:pdf, Size:1020Kb

Heritage and Early History of the Boundary Element Method Engineering Analysis with Boundary Elements 29 (2005) 268–302 www.elsevier.com/locate/enganabound Heritage and early history of the boundary element method Alexander H.-D. Chenga,*, Daisy T. Chengb aDepartment of Civil Engineering University of Mississippi, University, MS, 38677, USA bJohn D. Williams Library, University of Mississippi, University, MS 38677, USA Received 10 December 2003; revised 7 December 2004; accepted 8 December 2004 Available online 12 February 2005 Abstract This article explores the rich heritage of the boundary element method (BEM) by examining its mathematical foundation from the potential theory, boundary value problems, Green’s functions, Green’s identities, to Fredholm integral equations. The 18th to 20th century mathematicians, whose contributions were key to the theoretical development, are honored with short biographies. The origin of the numerical implementation of boundary integral equations can be traced to the 1960s, when the electronic computers had become available. The full emergence of the numerical technique known as the boundary element method occurred in the late 1970s. This article reviews the early history of the boundary element method up to the late 1970s. q 2005 Elsevier Ltd. All rights reserved. Keywords: Boundary element method; Green’s functions; Green’s identities; Boundary integral equation method; Integral equation; History 1. Introduction industrial settings, mesh preparation is the most labor intensive and the most costly portion in numerical After three decades of development, the boundary modeling, particularly for the FEM [9] Without the need element method (BEM) has found a firm footing in the of dealing with the interior mesh, the BEM is more cost arena of numerical methods for partial differential effective in mesh preparation. For problems involving equations. Comparing to the more popular numerical moving boundaries, the adjustment of the mesh is much methods, such as the Finite Element Method (FEM) and easier with the BEM; hence it is again the preferred tool. the Finite Difference Method (FDM), which can be With these advantages, the BEM is indeed an essential part classified as the domain methods, the BEM distinguish in the repertoire of the modern day computational tools. itself as a boundary method, meaning that the numerical In order to gain an objective assessment of the success of discretization is conducted at reduced spatial dimension. For the BEM, as compared to other numerical methods, a search example, for problems in three spatial dimensions, the is conducted using the Web of ScienceSM, an online discretization is performed on the bounding surface only; bibliographic database. Based on the keyword search, the and in two spatial dimensions, the discretization is on the total number of journal publications found in the Science boundary contour only. This reduced dimension leads to Citation Index Expanded 195 was compiled for several smaller linear systems, less computer memory require- numerical methods. The detail of the search technique is ments, and more efficient computation. This effect is most described in Appendix. The result, as summarized in pronounced when the domain is unbounded. Unbounded Table 1, clearly indicates that the finite element method domain needs to be truncated and approximated in domain (FEM) is the most popular with more than 66,000 entries. methods. The BEM, on the other hand, automatically The finite difference method (FDM) is a distant second with models the behavior at infinity without the need of more than 19,000 entries, less than one third of the FEM. deploying a mesh to approximate it. In the modern day The BEM ranks third with more than 10,000 entries, more than one half of the FDM. All other methods, such as the * Corresponding author. Tel.: C1 662 915 5362; fax: C1 662 915 5523. finite volume method (FVM) and the collocation method E-mail address: [email protected] (A.H.-D. Cheng). (CM), trail far behind. Based on this bibliographic search, 0955-7997/$ - see front matter q 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.enganabound.2004.12.001 A.H.-D. Cheng, D.T. Cheng / Engineering Analysis with Boundary Elements 29 (2005) 268–302 269 Table 1 to tell, there is an indication that the number of annual BEM Bibliographic database search based on the Web of Science publications is reaching a steady state at about 700–800 Numerical Search phrase in topic field No. of entries papers per year. For comparison, this number for the FEM is method about 5000 articles per year, and for the FDM, it is about FEM ‘Finite element’ or ‘finite elements’ 66,237 1400. FDM ‘Finite difference’ or ‘finite differences’ 19,531 As the BEM is on its way to maturity, it is of interest to BEM ‘Boundary element’ or ‘boundary 10,126 visit its history. Although there exist certain efforts toward elements’ or ‘boundary integral’ the writing of the history of the FEM [84,127] and the FDM FVM ‘Finite volume method’ or ‘finite volume 1695 methods’ [131,193], relatively little has been done for the BEM. The CM ‘Collocation method’ or ‘collocation 1615 present article is aimed at taking a first step toward the methods’ construction of a history for the BEM. Refer to Appendix A for search criteria. (Search date: May 3, 2004). Before reviewing its modern development, we shall first explore the rich heritage of the BEM, particularly its we can conclude that the popularity and versatility of BEM mathematical foundation from the 18th century to the early falls behind the two major methods, FEM and FDM. 20th. The historical development of the potential theory, However, BEM’s leading role as a specialized and Green’s function, and integral equations are reviewed. To alternative method to these two, as compared to all other interest the beginners of the field, biographical sketches numerical methods for partial differential equations, is celebrating the pioneers, whose contributions were key to unchallenged. the mathematical foundation of the BEM, are provided. The Fig. 1 presents the histogram of the number of journal coverage continues into the first half of the 20th century, papers published annually, containing BEM as a keyword. It when early numerical efforts were attempted even before shows that the growth of BEM literature roughly follows the the electronic computers were invented. S-curve pattern predicted by the theory of technology Numerical methods cannot truly prosper until the diffusion [75]. Based on the data, we observe that after the invention and then the wide availability of the electronic ‘invention of the technology’ in the late 1960s and early computers in the early 1960s. It is of little surprise that both 1970s, the number of published literature was very small; the FEM and the BEM started around that time. For the but it was on an exponential growth rate, until it reached an BEM, multiple efforts started around 1962. A turning point inflection point around 1991. After that time, the annual that launched a series of connected efforts, which soon publication continued to grow, but at a decreasing rate. A developed into a movement, can be traced to 1967. In the sign of a technology reaching its maturity is marked by the 1970s, the BEM was still a novice numerical technique, but leveling off of its production. Although it might be too early saw an exponential growth. By the end of it, textbooks were Fig. 1. Number of journal articles published by the year on the subject of BEM, based on the Web of Science search. Refer to Appendix for the search criteria. (Search date: May 3, 2004). 270 A.H.-D. Cheng, D.T. Cheng / Engineering Analysis with Boundary Elements 29 (2005) 268–302 written and conferences were organized on BEM. This gradient of temperature distribution article reviews the early development up to the late 1970s, q ZKkVT leaving the latter development to future writers. (1) Before starting, we should clarify the use of the term where q is the heat flux vector, k is the thermal conductivity, ‘boundary element method’ in this article. In the narrowest and T is the temperature. The steady state heat energy view, one can argue that BEM refers to the numerical conservation requires that at any point in space the technique based on the method of weighted residuals, divergence of the flux equals to zero: mirroring the finite element formulation, except that the $ Z weighing function used is the fundamental solution of V q 0 (2) governing equation in order to eliminate the need of domain Combining (1) and (2) and assuming that k is a constant, we discretization [19,21]. Or, one can view BEM as the obtain the Laplace equation numerical implementation of boundary integral equations 2 based on Green’s formula, in which the piecewise element V T Z 0 (3) concept of the FEM is utilized for the discretization [108]. For groundwater flow, similar procedure produces Even more broadly, BEM has been used as a generic term for a variety of numerical methods that use a boundary or V2h Z 0 (4) boundary-like discretization. These can include the general where h is the piezometric head. It is of interest to mention numerical implementation of boundary integral equations, that the notation V used in the above came form William known as the boundary integral equation method (BIEM) Rowan Hamilton (1805–1865). The symbol V, known as [54], whether elements are used in the discretization or not; ‘nabla’, is a Hebrew stringed instrument that has a triangular or the method known as the indirect method that distributes shape [73]. singular solutions on the solution boundary; or the method The above theories are based on physical quantities. A of fundamental solutions in which the fundamental solutions second way that the Laplace equation arises is through the are distributed outside the domain in discrete or continuous mathematical concept of finding a ‘potential’ that has no fashion with or without integral equation formulation; or direct physical meaning.
Recommended publications
  • Nuclear Technology
    Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10.
    [Show full text]
  • James Clerk Maxwell
    James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Trefftz-Type FEM for Solving Orthotropic Potential Problems
    2537 Trefftz-type FEM for solving orthotropic potential problems a Abstract K.Y. Wang A simple Trefftz-type finite element method (TFEM) is proposed P.C. Lib c for solving certain potential problems in orthotropic media. The D.Z. Wang “body force”, which is induced by internal sources or sinks, may produce domain integrals in the standard Trefftz finite element formulation. This will make the advantage “only-boundary inte- College of Mechanical Engineering, gration” of TFEM lose entirely. To overcome this difficulty, the Shanghai University of Engineering dual reciprocity method (DRM) is employed to transfer the origi- Science, Shanghai 201620, P. R. China nal problem into a homogeneous one. Then, a particular solution (PS) Trefftz-type finite element model is established based on the Corresponding author: modified functional. Three benchmark examples are investigated a [email protected] by the proposed approach and compared with the analytical solu- [email protected] tions. Received 13.09.2013 Keywords In revised form 22.10.2013 Orthotropic potential problem; “body force” term; Trefftz finite Accepted 03.08.2014 element method; modified functional; dual reciprocity method. Available online 17.08.2014 1 INTRODUCTION A wide range of problems in physics and engineering such as heat transfer, fluid flow motion, flow in porous media, shaft torsion, electrostatics and magnetostatics can finally come down to the solu- tion of potential problems. These problems in isotropic materials have been widely studied from both the analytical and numerical point of view. Due to the inherent mathematical difficulties, closed-form solutions exist for only a few simple cases.
    [Show full text]
  • Is It Time for a New Paradigm in Physics?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012024 doi:10.1088/1742-6596/1251/1/012024 Is it time for a new paradigm in physics? Shukri Klinaku University of Prishtina Sheshi Nëna Terezë, Prishtina, Kosovo [email protected] Abstract. The fact that the two main pillars of modern Physics are incompatible with each other; the fact that some unsolved problems have accumulated in Physics; and, in particular, the fact that Physics has been invaded by weird concepts (as if we were in the Middle Ages); these facts are quite sufficient to confirm the need for a new paradigm in Physics. But the conclusion that a new paradigm is needed is not sufficient, without an answer to the question: is there sufficient sources and resources to construct a new paradigm in Physics? I consider that the answer to this question is also yes. Today, Physics has sufficient material in experimental facts, theoretical achievements and human and technological potential. So, there is the need and opportunity for a new paradigm in Physics. The core of the new paradigm of Physics would be the nature of matter. According to this new paradigm, Physics should give up on wave-particle dualism, should redefine waves, and should end the mystery about light and its privilege in Physics. The consequences of this would make Physics more understandable, and - more importantly - would make it capable of solving current problems and opening up new perspectives in exploring nature and the universe. 1. Introduction Quantum Physics and the theory of relativity are the ‘two main pillars’ of modern Physics.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • On Frame-Invariance in Electrodynamics
    On Frame-Invariance in Electrodynamics Giovanni Romanoa aDepartment of Structural Engineering, University of Naples Federico II, via Claudio 21, 80125 - Naples, Italy e-mail: [email protected] Abstract The Faraday and Ampere` -Maxwell laws of electrodynamics in space- time manifold are formulated in terms of differential forms and exterior and Lie derivatives. Due to their natural behavior with respect to push-pull operations, these geometric objects are the suitable tools to deal with the space-time observer split of the events manifold and with frame-invariance properties. Frame-invariance is investigated in complete generality, referring to any automorphic transformation in space-time, in accord with the spirit of general relativity. A main result of the new geometric theory is the assess- ment of frame-invariance of space-time electromagnetic differential forms and induction laws and of their spatial counterparts under any change of frame. This target is reached by a suitable extension of the formula governing the correspondence between space-time and spatial differential forms in electro- dynamics to take relative motions in due account. The result modifies the statement made by Einstein in the 1905 paper on the relativity principle, and reproposed in the subsequent literature, and advocates the need for a revision of the theoretical framework of electrodynamics. Key words: Electrodynamics, frame-invariance, differential forms 1. Introduction arXiv:1209.5960v2 [physics.gen-ph] 10 Oct 2012 The history of electromagnetism is a really fascinating one, starting from the brilliant experimental discoveries by Romagnosi-Ørsted in 1800-1820 and by Zantedeschi-Henry-Faraday in 1829-30-31, and from the early beautiful theoretical abstractions that soon led to Faraday’s and Ampere` - Maxwell laws of electromagnetic inductions.
    [Show full text]
  • Hamilton's Principle in Continuum Mechanics
    Hamilton’s Principle in Continuum Mechanics A. Bedford University of Texas at Austin This document contains the complete text of the monograph published in 1985 by Pitman Publishing, Ltd. Copyright by A. Bedford. 1 Contents Preface 4 1 Mechanics of Systems of Particles 8 1.1 The First Problem of the Calculus of Variations . 8 1.2 Conservative Systems . 12 1.2.1 Hamilton’s principle . 12 1.2.2 Constraints.......................... 15 1.3 Nonconservative Systems . 17 2 Foundations of Continuum Mechanics 20 2.1 Mathematical Preliminaries . 20 2.1.1 Inner Product Spaces . 20 2.1.2 Linear Transformations . 22 2.1.3 Functions, Continuity, and Differentiability . 24 2.1.4 Fields and the Divergence Theorem . 25 2.2 Motion and Deformation . 27 2.3 The Comparison Motion . 32 2.4 The Fundamental Lemmas . 36 3 Mechanics of Continuous Media 39 3.1 The Classical Theories . 40 3.1.1 IdealFluids.......................... 40 3.1.2 ElasticSolids......................... 46 3.1.3 Inelastic Materials . 50 3.2 Theories with Microstructure . 54 3.2.1 Granular Solids . 54 3.2.2 Elastic Solids with Microstructure . 59 2 4 Mechanics of Mixtures 65 4.1 Motions and Comparison Motions of a Mixture . 66 4.1.1 Motions............................ 66 4.1.2 Comparison Fields . 68 4.2 Mixtures of Ideal Fluids . 71 4.2.1 Compressible Fluids . 71 4.2.2 Incompressible Fluids . 73 4.2.3 Fluids with Microinertia . 75 4.3 Mixture of an Ideal Fluid and an Elastic Solid . 83 4.4 A Theory of Mixtures with Microstructure . 86 5 Discontinuous Fields 91 5.1 Singular Surfaces .
    [Show full text]
  • Euler and Chebyshev: from the Sphere to the Plane and Backwards Athanase Papadopoulos
    Euler and Chebyshev: From the sphere to the plane and backwards Athanase Papadopoulos To cite this version: Athanase Papadopoulos. Euler and Chebyshev: From the sphere to the plane and backwards. 2016. hal-01352229 HAL Id: hal-01352229 https://hal.archives-ouvertes.fr/hal-01352229 Preprint submitted on 6 Aug 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EULER AND CHEBYSHEV: FROM THE SPHERE TO THE PLANE AND BACKWARDS ATHANASE PAPADOPOULOS Abstract. We report on the works of Euler and Chebyshev on the drawing of geographical maps. We point out relations with questions about the fitting of garments that were studied by Chebyshev. This paper will appear in the Proceedings in Cybernetics, a volume dedicated to the 70th anniversary of Academician Vladimir Betelin. Keywords: Chebyshev, Euler, surfaces, conformal mappings, cartography, fitting of garments, linkages. AMS classification: 30C20, 91D20, 01A55, 01A50, 53-03, 53-02, 53A05, 53C42, 53A25. 1. Introduction Euler and Chebyshev were both interested in almost all problems in pure and applied mathematics and in engineering, including the conception of industrial ma- chines and technological devices. In this paper, we report on the problem of drawing geographical maps on which they both worked.
    [Show full text]
  • 1 Portraits Leonhard Euler Daniel Bernoulli Johann-Heinrich Lambert
    Portraits Leonhard Euler Daniel Bernoulli Johann-Heinrich Lambert Compiled and translated by Oscar Sheynin Berlin, 2010 Copyright Sheynin 2010 www.sheynin.de ISBN 3-938417-01-3 1 Contents Foreword I. Nicolaus Fuss, Eulogy on Leonhard Euler, 1786. Translated from German II. M. J. A. N. Condorcet, Eulogy on Euler, 1786. Translated from French III. Daniel Bernoulli, Autobiography. Translated from Russian; Latin original received in Petersburg in 1776 IV. M. J. A. N. Condorcet, Eulogy on [Daniel] Bernoulli, 1785. In French. Translated by Daniel II Bernoulli in German, 1787. This translation considers both versions V. R. Wolf, Daniel Bernoulli from Basel, 1700 – 1782, 1860. Translated from German VI. Gleb K. Michajlov, The Life and Work of Daniel Bernoullli, 2005. Translated from German VII. Daniel Bernoulli, List of Contributions, 2002 VIII. J. H. S. Formey, Eulogy on Lambert, 1780. Translated from French IX. R. Wolf, Joh. Heinrich Lambert from Mühlhausen, 1728 – 1777, 1860. Translated from German X. J.-H. Lambert, List of Publications, 1970 XI. Oscar Sheynin, Supplement: Daniel Bernoulli’s Instructions for Meteorological Stations 2 Foreword Along with the main eulogies and biographies [i, ii, iv, v, viii, ix], I have included a recent biography of Daniel Bernoulli [vi], his autobiography [iii], for the first time translated from the Russian translation of the Latin original but regrettably incomplete, and lists of published works by Daniel Bernoulli [vii] and Lambert [x]. The first of these lists is readily available, but there are so many references to the works of these scientists in the main texts, that I had no other reasonable alternative.
    [Show full text]
  • Analytic Solutions of Partial Differential Equations
    Analytic Solutions of Partial Differential Equations MATH3414 School of Mathematics, University of Leeds 15 credits • Taught Semester 1, • Year running 2003/04 • Pre-requisites MATH2360 or MATH2420 or equivalent. • Co-requisites None. • Objectives: To provide an understanding of, and methods of solution for, the most important • types of partial differential equations that arise in Mathematical Physics. On completion of this module, students should be able to: a) use the method of characteristics to solve first-order hyperbolic equations; b) classify a second order PDE as elliptic, parabolic or hyperbolic; c) use Green's functions to solve elliptic equations; d) have a basic understanding of diffusion; e) obtain a priori bounds for reaction-diffusion equations. Syllabus: The majority of physical phenomena can be described by partial differential equa- • tions (e.g. the Navier-Stokes equation of fluid dynamics, Maxwell's equations of electro- magnetism). This module considers the properties of, and analytical methods of solution for some of the most common first and second order PDEs of Mathematical Physics. In particu- lar, we shall look in detail at elliptic equations (Laplace?s equation), describing steady-state phenomena and the diffusion / heat conduction equation describing the slow spread of con- centration or heat. The topics covered are: First order PDEs. Semilinear and quasilinear PDEs; method of characteristics. Characteristics crossing. Second order PDEs. Classifi- cation and standard forms. Elliptic equations: weak and strong minimum and maximum principles; Green's functions. Parabolic equations: exemplified by solutions of the diffusion equation. Bounds on solutions of reaction-diffusion equations. Form of teaching • Lectures: 26 hours. 7 examples classes.
    [Show full text]
  • New General Principle of Mechanics and Its Application to General Nonideal Nonholonomic Systems
    New General Principle of Mechanics and Its Application to General Nonideal Nonholonomic Systems Firdaus E. Udwadia1 Abstract: In this paper we develop a general minimum principle of analytical dynamics that is applicable to nonideal constraints. The new principle encompasses Gauss’s Principle of Least Constraint. We use this principle to obtain the general, explicit, equations of motion for holonomically and/or nonholonomically constrained systems with non-ideal constraints. Examples of a nonholonomically constrained system where the constraints are nonideal, and of a system with sliding friction, are presented. DOI: 10.1061/͑ASCE͒0733-9399͑2005͒131:4͑444͒ CE Database subject headings: Constraints; Equations of motion; Mechanical systems; Friction. Introduction ments. Such systems have, to date, been left outside the perview of the Lagrangian framework. As stated by Goldstein ͑1981, p. The motion of complex mechanical systems is often mathemati- 14͒ “This ͓total work done by forces of constraint equal to zero͔ cally modeled by what we call their equations of motion. Several is no longer true if sliding friction is present, and we must exclude formalisms ͓Lagrange’s equations ͑Lagrange 1787͒, Gibbs– such systems from our ͓Lagrangian͔ formulation.” And Pars Appell equations ͑Gibbs 1879, Appell 1899͒, generalized inverse ͑1979͒ in his treatise on analytical dynamics writes, “There are in equations ͑Udwadia and Kalaba 1992͔͒ have been developed for fact systems for which the principle enunciated ͓D’Alembert’s obtaining the equations of motion for such structural and me- principle͔… does not hold. But such systems will not be consid- chanical systems. Though these formalisms do not all afford the ered in this book.” Newtonian approaches are usually used to deal same ease of use in any given practical situation, they are equiva- with the problem of sliding friction ͑Goldstein 1981͒.
    [Show full text]
  • Chapter 4 Trefftz Method for Piezoelectricity
    Chapter 4 Trefftz Method for Piezoelectricity In Chapter 3, theoretical solutions for problems of PFC pull-out and push-out are presented. The solutions are, however, restricted to axi-symmetric problems. To remove this restriction, Trefftz numerical methods are presented for solving various engineering problems involved in piezoelectric materials in this chapter. Trefftz methods discussed here include the Trefftz FEM, Trefftz boundary element methods, and the Trefftz boundary-collocation method. 4.1 Introduction Over the past decades the Trefftz approach, introduced in 1926 [1], has been considerably improved and has now become a highly efficient computational tool for the solution of complex boundary value problems. Particularly, Trefftz FEM has been successfully applied to problems of elasticity [2], Kirchhoff plates [3], moderately thick Reissner-Mindlin plates [4], thick plates [5], general 3-D solid mechanics [6], potential problems [7], elastodynamic problems [8], transient heat conduction analysis [9], geometrically nonlinear plates [10], materially nonlinear elasticity [11], and contact problems [12]. Recently, Qin [13-16] extended this method to the case of piezoelectric materials. Wang et al. [17] analyzed singular electromechanical stress fields in piezoelectrics by combining the eigensolution approach and Trefftz FE models. As well as Trefftz FEM, Wang et al. [18] presented a Trefftz boundary element method for anti-plane piezoelectric problems. Sheng et al. [19] developed a Trefftz boundary collocation method for solving piezoelectric problems. The multi-region boundary element method [20] and the Trefftz indirect method [21] were also recently applied to electroelastic problems. This chapter, however, focuses on the results presented in [13-16,18,19,22]. 4.2 Trefftz FEM for generalized plane problems In this section, discussion is based on the formulation presented in [14].
    [Show full text]