Direct Seeding Acacias of Different Form and Function As Hosts for Sandalwood (Santalum Spicatum)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Macnaughton Crescent Structure Plan /Rw0Df1dxjkwrq&Uhvfhqw.Lqurvv 0Dufk
MACNAUGHTON CRESCENT STRUCTURE PLAN /RW0DF1DXJKWRQ&UHVFHQW.LQURVV 0DUFK 3HHW/LPLWHG 'RFXPHQW6WDWXV VERSION COMMENT PREPARED BY REVIEWED BY REVIEW DATE APPROVED BY ISSUE DATE )LQDOY &OLHQW5HYLHZ 06 6' -+ )LQDOY 6XEPLVVLRQ 06 6' -+ )LQDOY &LW\&RPPHQWV 00 -+ -+ )LQDOY &LW\6XEPLVVLRQBIRU$GYHUWLVLQJ 00 -+ -+ )LQDOY &LW\6XEPLVVLRQ (QYLUR8SGDWHV BIRU$GYHUWVLQJ 00 -+ -+ )LQDOY :$3&6FKHGXOHRI0RGLILFDWLRQV±)HE -+ -+ -+ MACNAUGHTON CRESCENT STRUCTURE PLAN LOT 9021 MACNAUGHTON CRESCENT, KINROSS MARCH 2017 3UHSDUHGIRU 3HHW/LPLWHG /HYHO6W*HRUJHV7HUUDFH 3(57+:$ 7 ) (SHUWK#SHHWFRPDX 3UHSDUHGE\ &UHDWLYH'HVLJQ3ODQQLQJ %URZQ6WUHHW ($673(57+:$ 7 ) (LQIR#FUHDWLYHGSFRPDX ,Q&ROODERUDWLRQ:LWK (PHUJH$VVRFLDWHV 6XLWH5DLOZD\5RDG 68%,$&2:$ 7 ) (DGPLQ#HPHUJHDVVRFLDWHVFRPDX 5LOH\&RQVXOWLQJ 32%R[=6W*HRUJHV7HUUDFH 3(57+:$ 7 (MRQULOH\WUDIILF#JPDLOFRP 7DEHF :LFNKDP6WUHHW ($673(57+:$ 7 ) (LQIR#WDEHFFRPDX &UHDWLQJ&RPPXQLWLHV -HUVH\6WUHHW -2/,0217:$ 7 ) (LQIR#FUHDWLQJFRPPXQLWLHVFRPDX 'LVFODLPHUDQG&RS\ULJKW 7KLVGRFXPHQWZDVFRPPLVVLRQHGE\DQGSUHSDUHGIRUWKHH[FOXVLYHXVHRI3HHW/LPLWHG,WLVVXEMHFWWRDQGLVVXHGLQDFFRUGDQFHZLWKWKHDJUHHPHQWEHWZHHQ3HHW/LPLWHGDQG&'3 &'3DFWVLQDOOSURIHVVLRQDOPDWWHUVDVDIDLWKIXODGYLVRUWRLWVFOLHQWVDQGH[HUFLVHVDOOUHDVRQDEOHVNLOODQGFDUHLQWKHSURYLVLRQRISURIHVVLRQDOVHUYLFHV7KHLQIRUPDWLRQSUHVHQWHGKHUHLQKDVEHHQFRPSLOHGIURPDQXPEHURIVRXUFHVXVLQJDYDULHW\RIPHWKRGV ([FHSWZKHUHH[SUHVVO\VWDWHG&'3GRHVQRWDWWHPSWWRYHULI\WKHDFFXUDF\YDOLGLW\RUFRPSUHKHQVLYHQHVVRIWKLVGRFXPHQWRUWKHPLVDSSOLFDWLRQRUPLVLQWHUSUHWDWLRQE\WKLUGSDUWLHVRILWVFRQWHQWV -
Host-Species-Dependent Physiological Characteristics of Hemiparasite
Tree Physiology 34, 1006–1017 doi:10.1093/treephys/tpu073 Research paper Host-species-dependent physiological characteristics of hemiparasite Santalum album in association with N2-fixing Downloaded from and non-N2-fixing hosts native to southern China J.K. Lu1, D.P. Xu1, L.H. Kang1,4 and X.H. He2,3,4 http://treephys.oxfordjournals.org/ 1Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangdong 510520, China; 2Department of Environmental Sciences, University of Sydney, Eveleigh, NSW 2015, Australia; 3School of Plant Biology, University of Western Australia, WA 6009, Australia; 4Corresponding authors ([email protected], [email protected]) Received April 8, 2014; accepted July 25, 2014; published online September 12, 2014; handling Editor Heinz Rennenberg Understanding the interactions between the hemiparasite Santalum album L. and its hosts has theoretical and practical sig- nificance in sandalwood plantations. In a pot study, we tested the effects of two non-N2-fixing Bischofia( polycarpa (Levl.) Airy Shaw and Dracontomelon duperreranum Pierre) and two N2-fixing hosts (Acacia confusa Merr. and Dalbergia odorifera T. Chen) on the growth characteristics and nitrogen (N) nutrition of S. album. Biomass production of shoot, root and haustoria, N and 15 at South China Institute of Botany, CAS on October 8, 2014 total amino acid were significantly greater in S. album grown with the two N2-fixing hosts. Foliage and root δ N values of S. album were significantly lower when grown with N2-fixing than with non-N2-fixing hosts. Significantly higher photosynthetic rates and ABA (abscisic acid) concentrations were seen in S. album grown with D. -
Bettongia Penicillata Ogilbyi (Woylie)
Advice to the Minister for the Environment, Heritage and the Arts from the Threatened Species Scientific Committee (the Committee) on Amendment to the list of Threatened Subspecies under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Scientific name (common name) Bettongia penicillata ogilbyi (Woylie) 2. Reason for Conservation Assessment by the Committee This advice follows assessment of information gathered through the Commonwealth’s Species Information Partnership with Western Australia, which is aimed at systematically reviewing species that are inconsistently listed under the EPBC Act and the Western Australian Wildlife Conservation Act 1950. The Woylie was listed as endangered under the former Endangered Species Protection Act 1992, but was not transferred to the EPBC Act threatened species list in 1999, reflecting an increase in Woylie distribution and abundance up to about year 2000. This assessment is in response to reported decline since that time. The Committee provides the following assessment of the appropriateness of the Woylie’s inclusion in the endangered category in the EPBC Act list of threatened species. 3. Summary of Conclusion The Committee judges that the subspecies has been demonstrated to have met sufficient elements of Criterion 1 to make it eligible for listing as endangered and of Criterion 2 as vulnerable. The highest level of listing recommended is endangered. 4. Taxonomy The Woylie is conventionally accepted as Bettongia penicillata ogilbyi . Family: Potoroidae. Other common names include: Brush-tailed bettong, Brush-tailed Rat-kangaroo. Indigenous names include: Woylyer and Karpitchi. 5. Description The Woylie is a small potoroid marsupial weighing 1-1.5 kg. It has a distinctive black brush at the end of its tail. -
Synthesizing Ecosystem Implications of Mistletoe Infection
Environmental Research Letters LETTER • OPEN ACCESS Related content - Networks on Networks: Water transport in Mistletoe, friend and foe: synthesizing ecosystem plants A G Hunt and S Manzoni implications of mistletoe infection - Networks on Networks: Edaphic constraints: the role of the soil in vegetation growth To cite this article: Anne Griebel et al 2017 Environ. Res. Lett. 12 115012 A G Hunt and S Manzoni - Impact of mountain pine beetle induced mortality on forest carbon and water fluxes David E Reed, Brent E Ewers and Elise Pendall View the article online for updates and enhancements. This content was downloaded from IP address 137.154.212.215 on 17/12/2017 at 21:57 Environ. Res. Lett. 12 (2017) 115012 https://doi.org/10.1088/1748-9326/aa8fff LETTER Mistletoe, friend and foe: synthesizing ecosystem OPEN ACCESS implications of mistletoe infection RECEIVED 28 June 2017 Anne Griebel1,3 ,DavidWatson2 and Elise Pendall1 REVISED 1 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia 12 September 2017 2 Institute for Land, Water and Society, Charles Sturt University, PO box 789, Albury, NSW, Australia ACCEPTED FOR PUBLICATION 3 Author to whom any correspondence should be addressed. 29 September 2017 PUBLISHED E-mail: [email protected] 16 November 2017 Keywords: mistletoe, climate change, biodiversity, parasitic plants, tree mortality, forest disturbance Original content from this work may be used Abstract under the terms of the Creative Commons Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is Attribution 3.0 licence. contributing to increasing rates of tree mortality globally. -
Acacia Saligna RA
Risk Assessment: ………….. ACACIA SALIGNA Prepared by: Etienne Branquart (1), Vanessa Lozano (2) and Giuseppe Brundu (2) (1) [[email protected]] (2) Department of Agriculture, University of Sassari, Italy [[email protected]] Date: first draft 01 st November 2017 Subsequently Reviewed by 2 independent external Peer Reviewers: Dr Rob Tanner, chosen for his expertise in Risk Assessments, and Dr Jean-Marc Dufor-Dror chosen for his expertise on Acacia saligna . Date: first revised version 04 th January 2018, revised in light of comments from independent expert Peer Reviewers. Approved by the IAS Scientific Forum on 26/10/2018 1 2 3 4 5 6 7 1 Branquart, Lozano & Brundu PRA Acacia saligna 8 9 10 Contents 11 Summary of the Express Pest Risk Assessment for Acacia saligna 4 12 Stage 1. Initiation 6 13 1.1 - Reason for performing the Pest Risk Assessment (PRA) 6 14 1.2 - PRA area 6 15 1.3 - PRA scheme 6 16 Stage 2. Pest risk assessment 7 17 2.1 - Taxonomy and identification 7 18 2.1.1 - Taxonomy 7 19 2.1.2 - Main synonyms 8 20 2.1.3 - Common names 8 21 2.1.4 - Main related or look-alike species 8 22 2.1.5 - Terminology used in the present PRA for taxa names 9 23 2.1.6 - Identification (brief description) 9 24 2.2 - Pest overview 9 25 2.2.2 - Habitat and environmental requirements 10 26 2.2.3 Resource acquisition mechanisms 12 27 2.2.4 - Symptoms 12 28 2.2.5 - Existing PRAs 12 29 Socio-economic benefits 13 30 2.3 - Is the pest a vector? 14 31 2.4 - Is a vector needed for pest entry or spread? 15 32 2.5 - Regulatory status of the pest 15 33 2.6 - Distribution -
Forest Products Commission Further Information
FOREST PRODUCTS COMMISSION WA SANDALWOOD HARVESTING PROPOSAL 2016-2026 FURTHER INFORMATION FOR THE ENVIRONMENTAL PROTECTION AUTHORITY 10 June 2016 Forest Products Commission Sandalwood Harvesting Proposal Page 1 of 41 Uncontrolled when printed 10 June 2016 Contents 1 Introduction ...................................................................................................................... 3 2 Industry Strategy (the Proposal) ....................................................................................... 5 3 Significance ...................................................................................................................... 6 4 Public consultation.......................................................................................................... 12 5 Baseline Information ....................................................................................................... 14 5.1 Sandalwood distribution and biology ..................................................................... 14 5.2 Quantity of resource .............................................................................................. 16 5.3 Populations of Sandalwood ................................................................................... 16 5.4 Regeneration ........................................................................................................ 18 6 Planned Operations ........................................................................................................ 20 6.1 Planning ............................................................................................................... -
Sesquiterpene Variation in West Australian Sandalwood (Santalum Spicatum)
Article Sesquiterpene Variation in West Australian Sandalwood (Santalum spicatum) Jessie Moniodis 1,2,3,*, Christopher G. Jones 1, Michael Renton 1,4, Julie A. Plummer 1, E. Liz Barbour 1, Emilio L. Ghisalberti 2 and Joerg Bohlmann 3 1 School of Biological Sciences (M084), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; [email protected] (C.G.J.); [email protected] (M.R.); [email protected] (J.A.P.); [email protected] (E.L.B.) 2 School of Chemistry and Biochemistry (M310), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; [email protected] 3 Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada; [email protected] 4 School of Agriculture and Environment, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia * Correspondence: [email protected]; Tel.: +61-(08)-6488-4478 Academic Editors: Robert M. Coates and Derek J. McPhee Received: 13 April 2017; Accepted: 19 May 2017; Published: 6 June 2017 Abstract: West Australian sandalwood (Santalum spicatum) has long been exploited for its fragrant, sesquiterpene-rich heartwood; however sandalwood fragrance qualities vary substantially, which is of interest to the sandalwood industry. We investigated metabolite profiles of trees from the arid northern and southeastern and semi-arid southwestern regions of West Australia for patterns in composition and co-occurrence of sesquiterpenes. Total sesquiterpene content was similar across the entire sample collection; however sesquiterpene composition was highly variable. Northern populations contained the highest levels of desirable fragrance compounds, α- and β-santalol, as did individuals from the southwest. -
Adelaide Botanic Gardens
JOURNAL of the ADELAIDE BOTANIC GARDENS AN OPEN ACCESS JOURNAL FOR AUSTRALIAN SYSTEMATIC BOTANY flora.sa.gov.au/jabg Published by the STATE HERBARIUM OF SOUTH AUSTRALIA on behalf of the BOARD OF THE BOTANIC GARDENS AND STATE HERBARIUM © Board of the Botanic Gardens and State Herbarium, Adelaide, South Australia © Department of Environment, Water and Natural Resources, Government of South Australia All rights reserved State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia J. Adelaide Bot. Gard. 19: 75-81 (2000) DETECTING POLYPLOIDY IN HERBARIUM SPECIMENS OF QUANDONG (SANTALUM ACUMINATUM (R.Br.) A.DC.) Barbara R. Randell 7 Hastings Rd., Sth Brighton, South Australia 5048 e-mail: [email protected] Abstract Stomate guard cells and pollen grains of 50 herbarium specimens were measured, and the results analysed. There was no evidence of the presence of two size classes of these cell types, and thus no evidence suggesting the presence of two or more ploidy races. High levels of pollen sterility were observed, and the consequences of this sterility in sourcing and managing orchard stock are discussed. Introduction In arid areas of Australia, the production of quandong fniit for human consumption isa developing industry. This industry is hampered by several factors in the breeding system of this native tree (Santalum acuniinatum (R.Br.) A. DC.- Santalaceae). In particular, plants grown from seed collected from trees with desirable fruit characters do not breed true to the parent tree. And grafted trees derived from a parent with desirable fruit characters are not always self-pollinating. This leads to problems in sourcing orchard trees with reliable characteristics, and also problems in designing orchards to provide pollen sources for grafted trees. -
Acacia in THIS ISSUE Dacacia the Name Acacia Comes This Issue of Seed Notes from the Greek Acacia, Ace Will Cover the Genus Or Acis Meaning a Point Or Acacia
No. 9 Acacia IN THIS ISSUE DAcacia The name Acacia comes This issue of Seed Notes from the Greek acacia, ace will cover the genus or acis meaning a point or Acacia. thorn, or from acazo, to D Description sharpen, although this name applies more to African than D Geographic Australian species (Australian distribution and Acacia have no thorns or habitat larger prickles, unlike those D Reproductive biology that are native to Africa). D Seed collection Many species of Acacia, or wattles as they are commonly D Phyllodes and flowers of Acacia aprica. Photo – Andrew Crawford Seed quality called in Australia, are valuable assessment for a range of uses, in D Seed germination particular as garden plants. Description In Australia, Acacia (family is modified to form a leaf- D Recommended reading They are also used for amenity plantings, windbreaks, shade DMimosaceae) are woody like structure or phyllode. trees, groundcovers, erosion plants that range from These phyllodes may be flat and salinity control. The timber prostrate under-shrubs to or terete. Some species do of some Acacia is very hard tall trees. Acacia flowers are not have phyllodes and the and is ideal for fence posts small, regular and usually flattened stems or cladodes (e.g. A. saligna or jam). Other bisexual. They occur in spikes act as leaves. Foliage can Acacia species are used to or in globular heads and vary from blueish to dark make furniture and ornaments. range in colour from cream green to silvery grey. Most The seed of some wattles is to intense yellow. The leaves species of Acacia have glands a good food source for birds, of Acacia may be bipinnate on the axis of the phyllodes, other animals and humans (the primary leaflets being although in Australian as ‘bush tucker’. -
Santalum Spicatum) Oil Production Using Multiple Treatments
Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2019 Stimulation of Western Australian Sandalwood (Santalum spicatum) oil production using multiple treatments Peta-Anne Smith Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Agriculture Commons Recommended Citation Smith, P. (2019). Stimulation of Western Australian Sandalwood (Santalum spicatum) oil production using multiple treatments. https://ro.ecu.edu.au/theses/2202 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/2202 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. -
The Value of Fringing Vegetation (Watercourse)
TheThe ValueValue ofof FringingFringing VegetationVegetation UnaUna BellBell Dedicated to the memory of Dr Luke J. Pen An Inspiration to Us All Acknowledgements This booklet is the result of a request from the Jane Brook Catchment Group for a booklet that focuses on the local native plants along creeks in Perth Hills. Thank you to the Jane Brook Catchment Group, Shire of Kalamunda, Environmental Advisory Committee of the Shire of Mundaring, Eastern Metropolitan Regional Council, Eastern Hills Catchment Management Program and Mundaring Community Bank Branch, Bendigo Bank who have all provided funding for this project. Without their support this project would not have come to fruition. Over the course of working on this booklet many people have helped in various ways. I particularly wish to thank past and present Catchment Officers and staff from the Shire of Kalamunda, the Shire of Mundaring and the EMRC, especially Shenaye Hummerston, Kylie del Fante, Renee d’Herville, Craig Wansbrough, Toni Burbidge and Ryan Hepworth, as well as Graham Zemunik, and members of the Jane Brook Catchment Group. I also wish to thank the WA Herbarium staff, especially Louise Biggs, Mike Hislop, Karina Knight and Christine Hollister. Booklet design - Rita Riedel, Shire of Kalamunda About the Author Una Bell has a BA (Social Science) (Hons.) and a Graduate Diploma in Landcare. She is a Research Associate at the WA Herbarium with an interest in native grasses, Community Chairperson of the Eastern Hills Catchment Management Program, a member of the Jane Brook Catchment Group, and has been a bush care volunteer for over 20 years. Other publications include Common Native Grasses of South-West WA. -
Department of Environment, Water and Natural Resources
Photograph: Helen Owens © Department of Environment, Water and Natural Resources, Government of South Australia Department of All rights reserved Environment, Copyright of illustrations might reside with other institutions or Water and individuals. Please enquire for details. Natural Resources Contact: Dr Jürgen Kellermann Editor, Flora of South Australia (ed. 5) State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia email: [email protected] Flora of South Australia 5th Edition | Edited by Jürgen Kellermann SANTALACEAE1 B.J. Lepschi2 (Korthalsella by B.A. Barlow3) Perennial herbs, shrubs, vines or small trees; hemiparasitic on roots or aerially on stems or branches, glabrous or variously hairy. Leaves alternate or opposite, sometimes decussate, rarely whorled, simple, entire, sometimes scale- like, caducous or persistent; stipules absent. Inflorescence axillary or terminal, a sessile or pedunculate raceme, spike, panicle or corymb, sometimes condensed or flowers solitary, usually bracteate, bracts sometimes united to form a bracteal cup; flowers bisexual or unisexual (and plants monoecious or dioecious), actinomorphic, perianth 1-whorled; tepals (3) 4–5 (–8), free or forming a valvately-lobed tube or cup; floral disc usually lobed, rarely absent; stamens as many as tepals and inserted opposite them; anthers sessile or borne on short filaments; carpels (2) 3 (–5); ovary inferior or superior; ovules 1–5 or lacking and embryo sac embedded in mamelon; style usually very short, rarely absent; stigma capitate or lobed. Fruit a nut, drupe or berry, receptacle sometimes enlarged and fleshy; seed 1 (2), without testa, endosperm copious. A family of 44 genera and about 875 species; almost cosmopolitan, well developed in tropical regions.