Technical Meeting on Low-Power Critical Facilities and Small Reactors Ottawa, Ontario, Canada, 2010 November 1-2

Total Page:16

File Type:pdf, Size:1020Kb

Technical Meeting on Low-Power Critical Facilities and Small Reactors Ottawa, Ontario, Canada, 2010 November 1-2 Technical Meeting on Low-Power Critical Facilities and Small Reactors Ottawa, Ontario, Canada, 2010 November 1-2 FIRST CRITICAL: The Original SLOWPOKE Reactor John.W. Hilborn, Peter D. Stevens-Guille Both retired ABSTRACT – The first approach to critical of the SLOWPOKE reactor is described together with many as yet unpublished photographs of the event. The development of the reactor and the overpower testing are discussed. 1. Introduction The approach to critical and the overpower testing of the original 1970 Slowpoke; a laboratory-sized reactor is described. SLOWPOKE was intended to provide an intense neutron flux for teaching, reactor physics experiments and to produce small amounts of radioisotopes. In 1967, the Los Alamos Laboratory reported a new, low mass of U-235 in a polythene core with a beryllium reflector. (Ref 1) That discovery, and an understanding of the influence of the temperature coefficient of reactivity, led to the SLOWPOKE concept: a self-regulating reactor relying on natural water convection cooling, which did not require complex and costly electromechanical safety systems, and allowed unattended operation with remote monitoring for an indefinite period. 2. Development and testing of SLOWPOKE In the 1970’s, Chalk River Nuclear Laboratories (CRNL) was at the forefront of Canadian nuclear technology. The first CANDU generating station, Douglas Point was in operation and Ontario Hydro’s 4-unit Pickering generation station was nearing completion. The time was ripe for innovation on the reactor front. The material to build a unique reactor was, by chance, at hand. Fuel, in the form of Aluminum clad highly enriched U-235 was available from NRX, and beryllium, a costly and toxic metal, was available in the form of a 9 in. inside diameter, 17 in. outside diameter cylindrical annulus from CRNL’s terminated ING project. These available materials came together in the construction of the original SLOWPOKE in the form of a tank- type low power assembly with the smallest known mass in the world of solid fuel (~ 760 gm) to reach criticality. A cross section of the reactor is shown in Fig 1. SLOWPOKE was the sixth reactor to go critical at CRNL and, apart from the ill-fated MAPLE reactors, the last. The conference presentation is illustrated with many yet unpublished photographs of the approach to critical on a sweltering insect-infested night in 1970 when hopes were as high as the outside temperature. Criticality was achieved by adding highly enriched uranium fuel elements to the core until the reactor was almost critical, and then adding beryllium plates above the core to reflect some of the escaping neutrons and thereby achieve a sustained chain reaction. “First Critical” was indicated by an exponential rise in neutron flux when the control absorbers were removed. Technically, the reactor multiplication factor, k-effective, was slightly greater then 1.0, and the reactor was slightly supercritical. Within a few days of achieving criticality, overpower tests were performed. These involved the rapid removal of a neutron absorbing control rod and observing the overpower transient. Reactor power rose to some 90 times normal and the tank glowed blue with Cerenkov radiation. However, the transient was self-regulating and after many hours, power approached normal. Figure 1 Cross section of a SLOWPOKE Installation 3. Conclusions Five of the original seven SLOWPOKEs in Canada are still licensed and operating, and there is one other SLOWPOKE at the University of the West Indies in Jamaica. However, if replication is a supreme source of flattery, SLOWPOKE enjoyed it. Since details of the original SLOWPOKE were published (Ref 2), the design was copied in China and designated by them as the “Miniature Neutron Source Reactor” or MNSR. Four of these reactors were installed in China, and five more exported to Syria, Iran, Pakistan, Nigeria and Ghana. What a missed AECL sales opportunity! 4. References [1] G.A.Jarvis and C.B.Mills, "Critical Mass Reduction", Los Alamos Scientific Laboratory, report LA-3651, (March 22, 1967) [2] R.E.Kay, P.D.Stevens-Guille, J.W.Hilborn, “SLOWPOKE; a New Low-Cost Laboratory Reactor,” International Journal of Applied Radiation and Isotopes, 1973, Vol 24, pp509-518. .
Recommended publications
  • CHAPTER 13 Reactor Safety Design and Safety Analysis Prepared by Dr
    1 CHAPTER 13 Reactor Safety Design and Safety Analysis prepared by Dr. Victor G. Snell Summary: The chapter covers safety design and safety analysis of nuclear reactors. Topics include concepts of risk, probability tools and techniques, safety criteria, design basis accidents, risk assessment, safety analysis, safety-system design, general safety policy and principles, and future trends. It makes heavy use of case studies of actual accidents both in the text and in the exercises. Table of Contents 1 Introduction ............................................................................................................................ 6 1.1 Overview ............................................................................................................................. 6 1.2 Learning Outcomes............................................................................................................. 8 1.3 Risk ...................................................................................................................................... 8 1.4 Hazards from a Nuclear Power Plant ................................................................................ 10 1.5 Types of Radiation in a Nuclear Power Plant.................................................................... 12 1.6 Effects of Radiation ........................................................................................................... 12 1.7 Sources of Radiation ........................................................................................................
    [Show full text]
  • CMD19-H100-8.Pdf
    CMD 19-H100.8 File/dossier : 6.01.07 Date : 2019-08-30 Edocs pdf : 5983279 Oral Presentation Exposé oral Submission from Nuclear Waste Mémoire d’Action Déchets Nucléaires et Watch and Inter-Church Uranium Inter-Church Uranium Committee Committee Educational Cooperative Educational Cooperative In the Matter of À l’égard de Saskatchewan Research Council, Saskatchewan Research Council SLOWPOKE-2 Reactor Installation nucléaire SLOWPOKE-2 Request by the Saskatchewan Research Demande du Saskatchewan Research Council Council to authorize the decommissioning of afin d’autoriser le déclassement du réacteur the SLOWPOKE-2 reactor SLOWPOKE-2 Commission Public Hearing Audience publique de la Commission September 26, 2019 Le 26 septembre 2019 This page was intentionally Cette page a été intentionnellement left blank laissée en blanc Decommissioning of Saskatchewan Research Council SLOWPOKE-2 Reactor (Ref. 2019-H-100) Nuclear Waste Watch and Inter-Church Uranium Committee Educational Cooperative’s Submission to the Canadian Nuclear Safety Commission Prepared by: Jessica Karban Legal Counsel, Canadian Environmental Law Association August 30, 2019 ISBN: 978-1-77189-996-3 Publication No. 1290 Report from NWW & ICUCEC | 2 SUMMARY OF RECOMMENDATIONS Recommendation 1: In order to facilitate public participation, all Commission Member Documents (CMDs) and accompanying references should be made available on the CNSC’s website at least 60 days in advance of intervention deadlines and remain on the website for future public use. Recommendation 2: Based on our review of applicable requirements governing decommissioning in Canada, we request that the CNSC: 1. Develop a principled overall policy framework underpinning a robust, clear, and enforceable regulatory regime for the decommissioning of nuclear facilities as well as the waste that arises from nuclear and decommissioning activities; 2.
    [Show full text]
  • A Comprehensive Approach to Elimination of Highly-Enriched
    Science and Global Security, 12:137–164, 2004 Copyright C Taylor & Francis Inc. ISSN: 0892-9882 print DOI: 10.1080/08929880490518045 AComprehensive Approach to Elimination of Highly-Enriched-Uranium From All Nuclear-Reactor Fuel Cycles Frank von Hippel “I would be prepared to submit to the Congress of the United States, and with every expectation of approval, [a] plan that would ... encourage world-wide investigation into the most effective peacetime uses of fissionable material...with the certainty that the investigators had all the material needed for the conducting of all experiments that were appropriate.” –President Dwight D. Eisenhower at the United Nations, Dec. 8, 1953, Over a period of about a decade after President Eisenhower’s “Atoms for Peace” speech, the U.S. and Soviet Union exported research reactors to about 40 countries. By the mid-1970s, most of these reactors were fueled with weapon-useable highly-enriched uranium (HEU), and most of those with weapon-grade uranium. In 1978, because of heightened concern about nuclear proliferation, both countries launched programs to develop low-enriched uranium (LEU) replacement fuel containing less than 20 percent 235U for foreign research reactors that they were supplying with HEU fuel. By the time the Soviet Union collapsed, most of the Soviet-supplied research reactors outside the USSR had been converted to 36% enriched uranium but the program then stalled because of lack of funding. By the end of 2003, the U.S. program had converted 31 reactors to LEU, including 11 within the U.S. If the development of very high density LEU fuel is successful, it appears that conversion of virtually all remaining research Received 12 January 2004; accepted 23 February 2004.
    [Show full text]
  • The Slowpoke Licensing Model
    AECL—9981 CA9200276 AECL-9981 ATOMIC ENERGY ENERGIEATOMIQUE OF CANADA LIMITED DU CANADA LIMITEE THE SLOWPOKE LICENSING MODEL LE MODELE D'AUTORISATION DE CONSTRUIRE DE SLOWPOKE V.G. SNELL, F. TAKATS and K. SZIVOS Prepared for presentation at the Post-Conference Seminar on Small- and Medium-Sized Nuclear Reactors San Diego, California, U S A. 1989 August 21-23 Chalk River Nuclear Laboratories Laboratoires nucleates de Chalk River Chalk River, Ontario KOJ 1J0 August 1989 aout ATOMIC ENERGY OF CANADA LIMITED THE SLOWPOKE LICENSING MODEL by V.G. Snell, F. Takats and K. Szivos Prepared for presentation at the Post-Conference Seminar on Small- and Medium-Sized Nuclear Reactors San Diego, California, U.S.A. 1989 August 21-23 Local Energy Systems Business Unit Chalk River Nuclear Laboratories Chalk River, Ontario KOJ 1JO 1989 August ENERGIE ATOMIQUE DU CANADA LIMITED LE MODELS D'AUTORISATION DE CONSTRUIRE DE SLOWPOKE par V.G. Snell, F. Takats et K. Szivos Resume Le Systeme Energetique SLOWPOKE (SES-10) est un reacteur de chauffage de 10 MW realise au Canada. II pent fonctionner sans la presence continue d'un operateur autorise et etre implante dans des zones urbaines. II a des caracteristiques de surete indulgentes dont des echelles de temps transitoires de l'ordre d'heures. On a developpe, au Canada, un precede appele autorisation de construire "d'avance" pour identifier et resoudre les questions reglementaires au debut du processus. Du fait du marche possible, en Hongrie, pour le chauffage nucleaire urbain, on a etabli un plan d'autorisation de construire qui comporte 1'experience canadienne en autorisation de construire, identifie les besoins particuliers de la Hongrie et reduit le risque de retard d'autorisation de construire en cherchant 1'accord de toutes les parties au debut du programme.
    [Show full text]
  • Workshop on Proposed Amendments to the Nuclear Security Regulations
    Workshop on Proposed Amendments to the Nuclear Security Regulations Michael Beaudette Director Nuclear Security Division October 12, 2016 e-Doc: 5054938 nuclearsafety.gc.ca Focus of Today’s Workshop • Licensees currently listed in Schedule 2 of the Nuclear Security Regulations – Cameco, GE-Hitachi, Nordion, SRB Technologies • Licensees who process, use and store Category III nuclear material – examples include Slowpoke Reactors, McMaster Nuclear Reactor • Licensees and stakeholders who transport or arrange for the transport of nuclear material – examples include RSB Logistic, TAM International, Laurentide Forwarders Inc. Canadian Nuclear Safety Commission 2 Today’s Goals • Provide an overview of several proposed amendments that CNSC staff is considering making to the Nuclear Security Regulations (NSR) and receive preliminary feedback from stakeholders • Provide an opportunity for stakeholders to suggest additional areas for potential amendments to the NSR Please note that this is a CNSC staff assessment for prompting early discussion Canadian Nuclear Safety Commission 3 Objectives of Amendments • Ensure that the regulations continue to fulfill their role in effectively addressing Canada’s nuclear security • Ensure that Canada continues to fulfill its international obligations for the security of nuclear and radioactive materials Canadian Nuclear Safety Commission 4 Overview of the Regulatory Amendment process Canadian Nuclear Safety Commission 5 Context: Changes Since Last Amendments • Last major amendments to NSR published in 2006 •
    [Show full text]
  • Minutes of the CNSC Meeting Held Wednesday and Thursday
    December 9 and 10, 2009 Minutes of the Canadian Nuclear Safety Commission (CNSC) Meeting held Wednesday, December 9, 2009 beginning at 9:07 a.m. at the CNSC Headquarters, 14th floor, 280 Slater Street, Ottawa, Ontario. The meeting was adjourned at 6:45 p.m. on Wednesday, December 9 and reconvened on Thursday, December 10, 2009 at 9:05 a.m. at the same location. The public meeting was adjourned again at 12:37 p.m., reconvened at 3:32 p.m. and closed at 4:05 p.m. Present: M. Binder, President A. Graham C.R. Barnes A. Harvey R.J. Barriault M. J. McDill M. Leblanc, Secretary J. Lavoie, Senior General Counsel P. Reinhardt, Recording Secretary M. Young, Recording Secretary CNSC staff advisors were: P. Webster, F. Rinfret, P. Elder, K. Lafrenière, T. Schaubel, B.R. Ravishankar, L. Desaulniers., J. Schmidt, M. Ilin, J. Jaferi, G. Cherkas, S. Lei, M. Rinker and D. Werry Other contributors were: • Atomic Energy Canada Limited: W. Pilkington and A.J. White • Bruce Power Inc.: F. Saunders • Hydro-Québec: C. Gélinas • University of Alberta: G. Pavlich and M. J. M. Duke • Ecole Polytechnique de Montréal: G. Kennedy, G. Marleau and C. Chilian • Royal Military College of Canada: K. Nielsen and R. Weir • Saskatchewan Research Council: J. Muldoon, Y. Wo and W. Yuen • Ontario Power Generation Inc.: M. Elliott and R. Leavitt, • Province of Ontario: S. Imbrogno • Cameco Corporation: A. Thorne, C. Astles, A. Oliver, D. Clark, J. Degraw, K. Vetor, R. Peters, A. Kodarin, M. Longinov, T. Rouse and M. Garrard • NB Power Nuclear: G.
    [Show full text]
  • Q L'energieatomique of Canada Limited Vasv Du Canada Limitee
    AECL-8252 ATOMIC ENERGY flF*~Q L'ENERGIEATOMIQUE OF CANADA LIMITED VASV DU CANADA LIMITEE SLOWPOKE: THE FIRST DECADE AND BEYOND SLOWPOKE: La premiere decennie et apres J.W. HILBORN and G.A. BURBIDGE Chalk River Nuclear Laboratories Laburatoires nucleates de Chalk River Chalk River, Ontario October 1983 octobre ATOMIC ENERGY OF CANADA LIMITED SLOWPOKE: The First Decade and Beyond by J.U. Hilborn and G.A. Burbidge* *Radiochemical Company Reactor Physics Branch Chalk River Nuclear Laboratories Chalk River, Ontario KOJ 1J0 Canada October 1983 AECL-8252 L'ENERGIE ATOMIQUE DU CANADA, LIMITEE SLOWPOKE: La premiere décennie et aprës* par J.W. Hilborn et G.A. Burbridge** Resume Depuis le démarrage du premier réacteur SLOWPOKE dans les Laboratoires nucléaires de Chalk River en 1970, six réacteurs de recherche SLOWPOKE-2 ont été installés ailleurs au Canada et un septième est en voie d'instal- lation en Jamaïque. Conçu principalement pour les analyses par activation neutronique, le SLOWPOKE de 20 kW produit un flux de neutrons thermiques de 10i2 n.cnr^s"' dans cinq alvéoles destinées aux échantillons situées dans un réflecteur en béryllium entourant le coeur du réacteur. Il y a cinq autres alvéoles dans le réflecteur rempli d'eau situé ä l'extérieur du réflecteur en béryllium. Le SLOWPOKE a d'excellentes propriétés en matière de sécurité provenant de la température négative et des coefficients de vide du coeur, d'une réactivitê maximale limitée et de l'accès interdit au coeur par les utilisateurs. Il en résulte que le réacteur n'a pas besoin d'un système d'arrêt automatique, de chambres d'ionisation de neutrons ou d'instruments de démarrage â faible puissance.
    [Show full text]
  • Proceedings of the Topical Session of the Rwmc 40Th Meeting On
    Unclassified NEA/RWM(2007)9 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 18-Jun-2007 ___________________________________________________________________________________________ English - Or. English NUCLEAR ENERGY AGENCY RADIOACTIVE WASTE MANAGEMENT COMMITTEE Unclassified NEA/RWM(2007)9 PROCEEDINGS OF THE TOPICAL SESSION OF THE RWMC 40TH MEETING ON: APPROACHES AND PRACTICES IN DECOMMISSIONING OF FACILITIES AND MANAGEMENT OF RADIOACTIVE WASTE FROM NON-NUCLEAR FUEL CYCLE RELATED ACTIVITIES Held at the NEA Offices in Issy-les-Moulineaux, France on 14 March 2007 English - Or. English JT03229237 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format NEA/RWM(2007)9 2 NEA/RWM(2007)9 FOREWORD Many activities in modern society involve the use of radioactive materials necessitating dedicated facilities for their production, application, and storage. This applies universally and, regardless of whether or not they are involved in nuclear fuel cycle related activities, all countries need frameworks for decommissioning of contaminated facilities and the construction of facilities for radioactive waste management in a manner that does not impact unduly on society in terms of safety and costs. Countries with nuclear power programmes are perhaps more likely to have in place the necessary infrastructure for dealing with non-power wastes. Nevertheless, a general concern exists about whether enough attention has been paid to small users and/or producers of radioactive materials, whether in academia, in medicine or in industry. Legacy waste is also an important issue in some countries. The exchange of the information about experiences of member countries in this area may thus be expected to have widespread benefits.
    [Show full text]
  • Whiteshell Laboratories – Manitoba’S Contribution to Nuclear Engineering in Canada
    Whiteshell Laboratories – Manitoba’s Contribution to Nuclear Engineering in Canada Prepared By Chris Saunders, P. Eng. and Ray Sochaski, P.Eng; Life Member Atomic Energy of Canada Limited (AECL) established a role in Manitoba in 1963 when the Whiteshell Nuclear J.L. Gray Research Establishment (WNRE; later renamed Whiteshell James Lorne Gray was born in Brandon, Laboratories) first took shape. WNRE was Canada’s second Manitoba in 1913. After nuclear science research and development laboratory and public school in the first facility of its kind in western Canada. Through its Winnipeg, he graduated years of operation, the people of the WNRE made with a Masters in Mechanical Engineering significant contributions to the science and engineering from the University of knowledge of Canada’s nuclear industry. This article Saskatchewan in 1938. He highlights just a few of these many accomplishments. joined the Royal Canadian Air Force in 1939. In the Beginning Mr. Gray’s scientific career began at the National Research In the late 1950s AECL’s managers thought Chalk River Council in 1948. He was assigned to the “Chalk River” Laboratories (CRL) was nearing the saturation point. A project. He advanced to become President of AECL in 1958. For the next 16 years he led the corporation through quick survey indicated that three provinces were lacking an impressive growth period that saw Canada become a federal research facilities: Newfoundland, Alberta and leader in nuclear engineering and technologies. Manitoba. Newfoundland, it was felt was not an option at Mr. Gray was appointed a Companion of the Order of the time, having joined Canada less than ten years Canada in 1969 and was awarded the Professional previously in 1949.
    [Show full text]
  • Refuelling the Slowpoke-2 Reactor at Ecole Polytechnique: Procedure and Proposed Experiments
    REFUELLING THE SLOWPOKE-2 REACTOR AT ECOLE POLYTECHNIQUE: PROCEDURE AND PROPOSED EXPERIMENTS. o G. KENNEDY AND G. MARLEAU Institut de genie nucleaire _^s O Ecole Polytechnique de Montreal, Montreal, Quebec H3C 3A7 Bf e-mail: [email protected] ^^ ABSTRACT As the expected lifetime of the present fuel in the SLOWPOKE-2 reactor at Ecole Polytechnique de Montreal was seen to approach, a project was initiated which will lead to the refueling of the reactor in 1997. Two aspects of this project require major development work: the defueling and fuel loading procedures need to be revised since this is the first time a SLOWPOKE reactor will be refueled; work is also required to bring safety analysis and documentation in line with recent regulatory requirements. Here, we present the proposed overall refueling strategy and discuss the changes in the operation of the core resulting from the use of low-enriched fuel. Additional experiments, which should be carried out during commissioning, are also analyzed. I. Introduction The SLOWPOKE-2 reactor at Ecole Polytechnique de Montreal has operated since 1976 with the original fuel which consists of 0.8 kg of 93% enriched Uranium (HEU). The 296 fuel pins contain Uranium-Aluminium alloy with Aluminium cladding. The core is surrounded by a Beryllium reflector and is moderated and cooled by light water which circulates by natural convection. The reactor is used for research involving neutron activation analysis and the use of radioactive tracers as well as for teaching.M As the lifetime of the present fuel was seen to approach, a project which was initiated three years ago will lead to the refueling of the reactor in 1997.
    [Show full text]
  • CNS-ZED2 Poster John Hilborn
    ZED-2 Winter School and CNS Joint Speaker Session Dr. John Hilborn “Fully-Integrated Mo-99 Production from NRU and CANDU” The Chalk River Branch of the Canadian Nuclear Society is pleased to offer a seminar entitled “Fully-Integrated Mo-99 Production from NRU and CANDU”: Where: JL Gray – Bennett Room (Back Entrance) When: Wednesday, December 7th Refreshments/Reception at 6:30 pm, Talk at 7 pm Price: Free, Open to the Public Dr. Hilborn began his career in the nuclear industry in 1949, at the Eldorado uranium mine in the Northwest Territories. Joining AECL at Chalk River in 1954, he participated in the start-up of the NRU, NPD and WR-1 reactors and the Steam Generating Heavy Water reactor physics experiment at Harwell, England. In 1964, he demonstrated the feasibility of a self-powered neutron detector for reactor in-core monitoring, which was patented in 1967, and co-founded Reuter- Stokes Canada, Ltd, the manufacturer of these detectors. Dr. Hilborn’s most significant contribution to reactor research was the SLOWPOKE reactor concept which resulted in the SLOWPOKE Research Reactor, Demonstration Reactor (SDR), and the SLOWPOKE Energy System (SES-10). Dr. Hilborn’s presentation will discuss a proposal for a new business model to transform the industry and establish a fully-integrated industrial radiopharmacy at CNL’s high-security site at Chalk River, in partnership with a similar fully- integrated industrial radiopharmacy at Lucas Heights, Australia. Assuming 2/3 global market share of Mo-99/Tc-99m generators and Tc-99m unit doses, this venture would earn combined annual revenue of ~ $840 million by 2021.
    [Show full text]
  • Leu-Fuelled Slowpoke-2 Research Reactors: Operational Experience and Utilisation
    LEU-FUELLED SLOWPOKE-2 RESEARCH REACTORS: OPERATIONAL EXPERIENCE AND UTILISATION G. Kennedy and J. St. Pierre Nuclear Engineering Institute, Ecole Polytechnique Montreal, Quebec, Canada L.G.I. Bennett and K.S. Nielsen SLOWPOKE-2 Facility at Royal Military College Kingston, Ontario, Canada Atomic Energy of Canada Limited designed the SLOWPOKE-2 research reactor [1] based on experience with the SLOWPOKE-1 prototype, which operated for four years at the University of Toronto. Between 1976 and 1984, seven SLOWPOKE-2 reactors with HEU fuel were commissioned in six Canadian cities and in Kingston, Jamaica. They use 93% enriched uranium in the form of 28% uranium-aluminum alloy with aluminum cladding. The core is an assembly of about 300 fuel pins, only 22 cm diameter and 23 cm high, surrounded by a fixed beryllium annulus and a bottom beryllium slab. Criticality is maintained by adding beryllium plates in a tray on top of the core. A schematic drawing of the core with irradiation sites is shown in Figure I. Control Rod Inner Irradiation Site Outer Site Beryllium Reflectors Container Fuel 10 cm Figure I The SLOWPOKE-2 reactor core Maximum thermal power is 20 kW and heat is removed by natural convection of the light water moderator. The maximum neutron flux in an inner irradiation site is 1 x 1012 cm-2s-1. Excess reactivity is limited to 4 mk. Every two or three years a beryllium shim-plate is added to compensate the loss of reactivity due to U-235 burnup and the production of long-lived poisons. 2 The reactors are used mainly for neutron activation analysis but also for the production of radioactive tracers and teaching.
    [Show full text]