Updating Changes in the Iberian Decapod Crustacean Fauna (Excluding Crabs) After 50 Years

Total Page:16

File Type:pdf, Size:1020Kb

Updating Changes in the Iberian Decapod Crustacean Fauna (Excluding Crabs) After 50 Years SCIENTIA MARINA 82(4) December 2018, 207-229, Barcelona (Spain) ISSN-L: 0214-8358 https://doi.org/10.3989/scimar.04831.04A Updating changes in the Iberian decapod crustacean fauna (excluding crabs) after 50 years J. Enrique García Raso 1, Jose A. Cuesta 2, Pere Abelló 3, Enrique Macpherson 4 1 Universidad de Málaga, Departamento de Biología Animal, Campus de Teatinos s/n, 29071 Málaga, Spain. (JEGR) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0003-3092-9518 2 Instituto de Ciencias Marinas de Andalucía, CSIC, Avda. República Saharaui 2, 11519 Puerto Real, Cádiz, Spain. (JAC) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0001-9482-2336 3 Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain. (PA) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0001-6034-2465 4 Centre d’Estudis Avançats de Blanes, CSIC, Carrer d’Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain. (EM) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0003-4849-4532 Summary: An annotated checklist of the marine decapod crustaceans (excluding crabs) of the Iberian Peninsula has been compiled 50 years after the publication of “Crustáceos decápodos ibéricos” by Zariquiey Álvarez (1968). A total of 293 spe- cies belonging to 136 genera and 48 families has been recorded. This information increases by 116 species the total number reported by Zariquiey Álvarez in his posthumous work. The families with the greatest species richness are the Paguridae (28) and Palaemonidae (18). References by geographic sectors and for all species are given. The results show that 264 species are reported in the Atlantic sectors, while 178 have been found in the Mediterranean. The species richness and the differ- ences between and within sectors are discussed; these are mainly due to the dimension of the areas, the depth ranges and the confluence of distinct water masses with a different origin and different physicochemical features. Consequently, the greatest richness of decapod species (excluding crabs) is found in the Gulf of Cádiz, with 194 species. The total number of decapods found in and around Iberian waters, including crabs, freshwater species and some new records not yet published, reaches 448. Keywords: checklist; Decapoda Crustacea; Iberian Peninsula; species richness. Actualización de los cambios en la fauna de crustáceos decápodos ibéricos (excluidos los cangrejos) después de 50 años Resumen: Se ha realizado un listado comentado de los crustáceos decápodos marinos (excluidos los cangrejos) de la penín- sula ibérica, después de 50 años de la publicación “Crustáceos decápodos ibéricos” por Zariquiey Álvarez (1968). En total se mencionan 293 especies de 136 géneros y 48 familias. Estos datos incrementan en 116 el número de especies citadas por Zariquiey Álvarez en su obra póstuma. Las familias con mayor riqueza específica son Paguridae (28) y Palaemonidae (18). Se citan referencias para cada sector geográfico y especie. Las aguas atlánticas (en su conjunto) muestran una mayor riqueza, con 264 especies, mientras que 178 han sido citadas en aguas mediterráneas ibéricas. Se da el número de especies por sectores y se comentan las diferencias, consecuencia, principalmente, de la dimensión y rango de profundidad de cada uno de ellos y de la confluencia de masas de aguas con orígenes y caracteríticas fisico-químicas diferentes. Así, la mayor riqueza específica (sin incluir los cangrejos) se encuentra en el Golfo de Cádiz con 194 especies. El número total de especies de crustáceos decápodos en aguas ibéricas, incluyendo cangrejos, especies de agua dulce y algunas nuevas citas de especies aún no publicadas, sería de 448. Palabras clave: lista inventario; Crustacea Decapoda; península ibérica; riqueza de especies. Citation/Como citar este artículo: García Raso J.E., Cuesta J.A., Abelló P., Macpherson E. 2018. Updating changes in the Iberian decapod crustacean fauna (excluding crabs) after 50 years. Sci. Mar. 82(4): 207-229. https://doi.org/10.3989/ scimar.04831.04A Editor: J. Templado. Received: July 6, 2018. Accepted: October 31, 2018. Published: December 14, 2018. Copyright: © 2018 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License. 208 • J.E. Gracia Raso et al. INTRODUCTION The study of decapod crustaceans in the Iberian Peninsula began in the last part of the 19th century, with information and lists obtained from different coastal areas (e.g. Brito Capello 1873, Barceló-Combis 1875, Bolívar 1892, 1916, Buen 1887, 1916, Ferrer Galdiano 1920, 1940, Miranda y Rivera 1921), as well as from the results from the research expeditions that covered parts of these waters (see García Raso 1996 and refer- ences cited therein). The first checklist for all Spanish waters was compiled by Miranda y Rivera (1933) and subsequently extended by Zariquiey-Cenarro (1935a, b, 1942). Zariquiey Álvarez (1946) published a syn- thesis, “Crustáceos Decápodos Mediterráneos”. In Portugal, Nobre (1931, 1936) published “Crustáceos Decápodos e Stomatópodes marinhos de Portugal”. These relatively intensive works on the Iberian deca- Fig. 1. – Map of the Iberian Peninsula and nearby waters show- pods culminated just 50 years ago with the publication ing the areas considered to characterize the spatial distribution of of “Crustáceos Decápodos Ibéricos”, a posthumous decapod crustacean species. The –200 and –1000 metres isobaths work by Ricardo Zariquiey Álvarez completed by Drs are shown. Areas: Gulf of Biscay and Galicia (GB-GA); western Lipke B. Holthuis, Jacques Forest and Isabella Gordon, Portugal (WP); Gulf of Cádiz or southwestern Iberian Peninsula (GC); Alborán Sea (ALB); Spanish western Mediterranean (SWM). which has been, and still is, a basic reference work for Explanation of letters in left lower corner of figure. Figure modified this taxonomic group in the Mediterranean Sea and from Scientia Marina in Marco-Herrero et al. (2015). Europe. Recently, the works of d’Udekem d’Acoz (1999a) Álvarez (1968) and d’Udekem d’Acoz (1999a), in ad- and Türkay (2001) offer updated lists of the European dition to a large number of subsequent specific pub- decapods, but they do not provide listings of species by lications. Data from relatively recent expeditions in geographic sectors. remote areas of the coast, especially those from deep Today, the number of known Iberian decapod crus- and pelagic waters (e.g. Türkay 1975, García Raso taceans has increased mainly due to the large number 1996, Fariña et al. 1997, and Cartes et al. 2007, 2014) of studies undertaken along the continental shelf and enabled us to complete the species list. Additional in- slope, as well as on bathyal bottoms. Furthermore, cli- formation was obtained from several expeditions and mate change and other anthropogenic activities have research projects carried out by governmental agen- increased the number of thermophilic and invasive spe- cies, which have published information and species cies, reinforcing the utility of check-lists for detecting lists on the internet. These include the Instituto Es- changes in fauna over time in specific regional areas pañol de Oceanografía projects ECOMARG (http:// (Zenetos et al 2010, 2012). Finally, changes in nomen- www.ecomarg.com/biodiversidad.html), DEEPER clature and taxonomical reorganizations at different (http://www.ma.ieo.es/deeper) and INDEMARES levels (families, genera and species) have taken place (http://www.indemares.es), the Alcalá University in these years due, in part, to the development of mo- CALMEN07 Expedition (http://www.juanjunoy.info/ lecular techniques (Cuesta et al. 2012, among others) wp-content/uploads/2012/12/CALMEN07.pdf; Junoy and to larval studies (Marco-Herrero et al. 2013). 2008) and studies of specific areas (e.g. Calado and These reasons led us to consider that it would be Narciso 2002). Reviews of specific groups and genera of wider interest to review the list of Iberian decapod (e.g. Macpherson 1988, García-Gómez 1994, Galil crustacean species. We also present this review in hom- 2000, and Macpherson and Segonzac 2005), those age to and recognition of all these authors, especially with descriptions of new species (e.g. García Muñoz Dr. Ricardo Zariquiey Álvarez and his father Ricardo et al. 2014), and new records of introduced species Zariquiey-Cenarro. In this regard, Marco-Herrero et al. in the area (e.g. García Raso et al. 2014b) were also (2015) published a first paper with the updated list of included. the brachyuran crabs, and now, with this present pa- In addition, in studies on meso- and bathypelagic per, which includes the remaining marine groups, we species in waters some distance from the Iberian update the definitive list of all marine Iberian decapod Peninsula coast, for example between Portugal and crustaceans. In addition, a list of freshwater species Azores, some species are mentioned but their spe- is given to account for the total number of species in cific location is not (e.g. Burukovsky 1996). Some Iberian waters. of these species, which show wide geographic distri- bution and extensive vertical movements, have also MATERIALS AND METHODS been included, because although they have not been captured in jurisdictional waters (economic zone) In order to draw up the present updated list of Ibe- their presence is highly probable, especially consid- rian decapod crustaceans (excluding Brachyura), two ering the scarcity of studies in the pelagic habitat basic studies were taken as a departure point: Zariquiey around Iberian waters. SCI. MAR. 82(4), December 2018, 207-229. ISSN-L 0214-8358 https://doi.org/10.3989/scimar.04831.05A Changes in the Iberian decapod crustacean fauna • 209 The geographical sectors considered are the same Iberian Peninsula (Appendix 1). They belong to 136 as in Marco-Herrero et al. (2015) (Fig. 1): the Gulf of genera and 48 families. These data increase the num- Biscay and Galicia, western Portugal, the Gulf of Cádiz ber of species recorded by Zariquiey Álvarez (1968) by and the southwestern Iberian Peninsula, the Alboran 116 species of 54 different genera and 22 families (the Sea, and the Spanish western Mediterranean.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Development of Species-Specific Edna-Based Test Systems For
    REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe).
    [Show full text]
  • W7192e19.Pdf
    click for previous page 952 Shrimps and Prawns Sicyoniidae SICYONIIDAE Rock shrimps iagnostic characters: Body generally Drobust, with shell very hard, of “stony” grooves appearance; abdomen often with deep grooves and numerous tubercles. Rostrum well developed and extending beyond eyes, always bearing more than 3 upper teeth (in- cluding those on carapace); base of eyestalk with styliform projection on inner surface, but without tubercle on inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. 1 Carapace lacks both postorbital and postantennal spines, cervical groove in- distinct or absent. Exopod present only on first maxilliped. All 5 pairs of legs well devel- 2 oped, fourth leg bearing a single well-devel- 3rd and 4th pleopods 4 single-branched oped arthrobranch (hidden beneath 3 carapace). In males, endopod of second pair 5 of pleopods (abdominal appendages) with appendix masculina only. Third and fourth pleopods single-branched. Telson generally armed with a pair of fixed lateral spines. Colour: body colour varies from dark brown to reddish; often with distinct spots or colour markings on carapace and/or abdomen - such colour markings are specific and very useful in distinguishing the species. Habitat, biology, and fisheries: All members of this family are marine and can be found from shallow to deep waters (to depths of more than 400 m). They are all benthic and occur on both soft and hard bottoms. Their sizes are generally small, about 2 to 8 cm, but some species can reach a body length over 15 cm. The sexes are easily distinguished by the presence of a large copulatory organ (petasma) on the first pair of pleopods of males, while the females have the posterior thoracic sternites modified into a large sperm receptacle process (thelycum) which holds the spermatophores or sperm sacs (usually whitish or yellowish in colour) after mating.
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Decapod Crustacean Assemblages Off the West Coast of Central Italy (Western Mediterranean)
    SCIENTIA MARINA 71(1) March 2007, 19-28, Barcelona (Spain) ISSN: 0214-8358 Decapod crustacean assemblages off the West coast of central Italy (western Mediterranean) EMANUELA FANELLI 1, FRANCESCO COLLOCA 2 and GIANDOMENICO ARDIZZONE 2 1 IAMC-CNR Marine Ecology Laboratory, Via G. da Verrazzano 17, 91014 Castellammare del Golfo (Trapani) Italy. E-mail: [email protected] 2 Department of Animal and Human Biology, University of Rome “la Sapienza”, V.le dell’Università 32, 00185 Rome, Italy. SUMMARY: Community structure and faunal composition of decapod crustaceans off the west coast of central Italy (west- ern Mediterranean) were investigated. Samples were collected during five trawl surveys carried out from June 1996 to June 2000 from 16 to 750 m depth. Multivariate analysis revealed the occurrence of five faunistic assemblages: 1) a strictly coastal community over sandy bottoms at depths <35 m; 2) a middle shelf community over sandy-muddy bottoms at depths between 50 and 100 m; 3) a slope edge community up to 200 m depth as a transition assemblage; 4) an upper slope community at depths between 200 and 450 m, and 5) a middle slope community at depths greater than 450 m. The existence of a shelf- slope edge transition is a characteristic of the western and central Mediterranean where a Leptometra phalangium facies is found in many areas at depths between 120 and 180 m. The brachyuran crab Liocarcinus depurator dominates the shallow muddy-sandy bottoms of the shelf, while Parapenaeus longirostris is the most abundant species from the shelf to the upper slope assemblage.
    [Show full text]
  • Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an Assessment of Macaronesian and Cape Verde Biogeographic Marine Ecoregions
    Zootaxa 4413 (3): 401–448 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4413.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:2DF9255A-7C42-42DA-9F48-2BAA6DCEED7E Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions JOSÉ A. GONZÁLEZ University of Las Palmas de Gran Canaria, i-UNAT, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: [email protected]. ORCID iD: 0000-0001-8584-6731. Abstract The complete list of Canarian marine decapods (last update by González & Quiles 2003, popular book) currently com- prises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde ar- chipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gath- ering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; diver- gent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos.
    [Show full text]
  • Deep-Water Decapod Crustacea from Eastern Australia: Lobsters of the Families Nephropidae, Palinuridae, Polychelidae and Scyllaridae
    Records of the Australian Museum (1995) Vo!. 47: 231-263. ISSN 0067-1975 Deep-water Decapod Crustacea from Eastern Australia: Lobsters of the Families Nephropidae, Palinuridae, Polychelidae and Scyllaridae D.J.G. GRIFFIN & H.E. STODDART Australian Museum, 6 College Street, Sydney NSW 2000, Australia ABSTRACT. Twenty-three species of deep-water lobsters in the families Nephropidae, Palinuridae, Polychelidae and Scyllaridae are recorded from the continental shelf and slope off eastern Australia. Ten species and two genera have not been previously recorded from Australia. These are Acanthacaris tenuimana, Projasus parkeri, Polycheles baccatus, P. euthrix, P. granulatus, Stereomastis andamanensis, S. helleri, S. sculpta, S. suhmi and Willemoesia bonaspei. The deep­ water lobster fauna of eastern Australia is compared with those of other Indo-Pacific areas. A key is given to all deep-water lobster species recorded from Australian waters. GRIFFIN, D.J.O. & H.E. STODDART, 1995. Deep-water decapod Crustacea from eastern Australia: lobsters of the families Nephropidae, Palinuridae, Polychelidae and Scyllaridae. Records of the Australian Museum 47(3): 231-263. The deep-water lobster fauna of the Australian region fauna of southern Australia is as yet poorly known but first became known from collections made by the British extensive collections have been made by the Museum Challenger Expedition (Bate, 1888), the 1911-14 of Victoria on the continental shelf and slope of south­ Australasian Antarctic Expedition (Bage, 1938), the eastern Australia and Bass Strait. Commonwealth of Australia fishing experiments on the This paper is the third of a series dealing with deep­ Endeavour (1909-1914); various local trawling excursions water decapods taken by the New South Wales Fisheries (e.g., Grant, 1905) and serendipitous catches by Research Vessel Kapala, which has carried out trawling professional fishermen (e.g., McNeill, 1949, 1956).
    [Show full text]
  • Prawn Fauna (Crustacea: Decapoda) of India - an Annotated Checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean Prawns
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01697-08 Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean prawns E. V. Radhakrishnan*1, V. D. Deshmukh2, G. Maheswarudu3, Jose Josileen 1, A. P. Dineshbabu4, K. K. Philipose5, P. T. Sarada6, S. Lakshmi Pillai1, K. N. Saleela7, Rekhadevi Chakraborty1, Gyanaranjan Dash8, C.K. Sajeev1, P. Thirumilu9, B. Sridhara4, Y Muniyappa4, A.D.Sawant2, Narayan G Vaidya5, R. Dias Johny2, J. B. Verma3, P.K.Baby1, C. Unnikrishnan7, 10 11 11 1 7 N. P. Ramachandran , A. Vairamani , A. Palanichamy , M. Radhakrishnan and B. Raju 1CMFRI HQ, Cochin, 2Mumbai RC of CMFRI, 3Visakhapatnam RC of CMFRI, 4Mangalore RC of CMFRI, 5Karwar RC of CMFRI, 6Tuticorin RC of CMFRI, 7Vizhinjam RC of CMFRI, 8Veraval RC of CMFRI, 9Madras RC of CMFRI, 10Calicut RC of CMFRI, 11Mandapam RC of CMFRI *Correspondence e-mail: [email protected] Received: 07 Sep 2011, Accepted: 15 Mar 2012, Published: 30 Apr 2012 Original Article Abstract Many penaeoid prawns are of considerable value for the fishing Introduction industry and aquaculture operations. The annual estimated average landing of prawns from the fishery in India was 3.98 The prawn fauna inhabiting the marine, estuarine and lakh tonnes (2008-10) of which 60% were contributed by freshwater ecosystems of India are diverse and fairly well penaeid prawns. An additional 1.5 lakh tonnes is produced from known. Significant contributions to systematics of marine aquaculture. During 2010-11, India exported US $ 2.8 billion worth marine products, of which shrimp contributed 3.09% in prawns of Indian region were that of Milne Edwards (1837), volume and 69.5% in value of the total export.
    [Show full text]
  • Crangon Franciscorum Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Crangon franciscorum Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Caridea Common gray shrimp Family: Crangonoidea, Crangonidae Taxonomy: Schmitt (1921) described many duncle segment (Wicksten 2011). Inner fla- shrimp in the genus Crago (e.g. Crago fran- gellum of the first antenna is greater than ciscorum) and reserved the genus Crangon twice as long as the outer flagellum (Kuris et for the snapping shrimp (now in the genus al. 2007) (Fig. 2). Alpheus). In 1955–56, the International Mouthparts: The mouth of decapod Commission on Zoological Nomenclature crustaceans comprises six pairs of appendag- formally reserved the genus Crangon for the es including one pair of mandibles (on either sand shrimps only. Recent taxonomic de- side of the mouth), two pairs of maxillae and bate revolves around potential subgeneric three pairs of maxillipeds. The maxillae and designation for C. franciscorum (C. Neocran- maxillipeds attach posterior to the mouth and gon franciscorum, C. franciscorum francis- extend to cover the mandibles (Ruppert et al. corum) (Christoffersen 1988; Kuris and Carl- 2004). Third maxilliped setose and with exo- ton 1977; Butler 1980; Wicksten 2011). pod in C. franciscorum and C. alaskensis (Wicksten 2011). Description Carapace: Thin and smooth, with a Size: Average body length is 49 mm for single medial spine (compare to Lissocrangon males and 68 mm for females (Wicksten with no gastric spines). Also lateral (Schmitt 2011). 1921) (Fig. 1), hepatic, branchiostegal and Color: White, mottled with small black spots, pterygostomian spines (Wicksten 2011). giving gray appearance. Rostrum: Rostrum straight and up- General Morphology: The body of decapod turned (Crangon, Kuris and Carlton 1977).
    [Show full text]
  • (Jasus Edwardsii Hutton, 1875) Larvae
    Environmental Physiology of Cultured Early-Stage Southern Rock Lobster (Jasus edwardsii Hutton, 1875) Larvae Michel Francois Marie Bermudes Submitted in fulfilment of the requirements for the degree of Doctor Of Philosophy University of Tasmania November 2002 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information in duly acknowledged in the thesis, and to the best of the candidate's knowledge and belief, no material previously published or written by another person except where due acknowledgment is made in the text of the thesis. Michel Francois Marie Bermudes This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968. Michel Francois Marie Bermudes Abstract The aim of this project was to define more clearly the culture conditions for the propagation of the southern rock lobster (Jasus echvardsii) in relation to environmental bioenergetic constraints. The effects of temperature and photoperiod on the first three stages of development were first studied in small-scale culture experiments. Larvae reared at 18°C developed faster and reached a larger size at stage IV than larvae cultured at 14°C. Development through stage II was shorter under continuous light. However, the pattern of response to photoperiod shifted at stage III when growth was highest in all the light/dark phase treatments than under continuous light. The influence of temperature and light intensity in early-stage larvae was further investigated through behavioural and physiological studies. Results obtained in stages I, II and III larvae indicated an energetic imbalance at high temperature (-22°C).
    [Show full text]
  • Anomura (Crustacea Decapoda) from the Mayotte Region, Western Indian Ocean
    ATOLL RESEARCH BULLETIN NO. 593 ANOMURA (CRUSTACEA DECAPODA) FROM THE MAYOTTE REGION, WESTERN INDIAN OCEAN Joseph Poupin, Jean-Marie Bouchard, Vincent Dinhut, Régis Cleva, and Jacques Dumas ANOMURA (CRUSTACEA DECAPODA) FROM THE MAYOTTE REGION, WESTERN INDIAN OCEAN Joseph Poupin, Jean-Marie Bouchard, Vincent Dinhut, Régis Cleva and Jacques Dumas Atoll Research Bulletin No. 593 23 October 2013 All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the Bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the Bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu The rights to all text and images in this publication are owned either by the contributing authors or third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) i CONTENT CONTENT .............................................................................................................................
    [Show full text]
  • Seasonal Variation in Community Structure and Recruitment of Benthic Decapods in a Sub-Tidal Cobble Habitat
    MARINE ECOLOGY PROGRESS SERIES Vol. 206: 181–191, 2000 Published November 3 Mar Ecol Prog Ser Seasonal variation in community structure and recruitment of benthic decapods in a sub-tidal cobble habitat Martin Robinson*, Oliver Tully Department of Zoology, Trinity College, Dublin, Ireland ABSTRACT: Quantitative suction samples of benthic decapod fauna were taken in the south of Ireland during 1997. Some species settled into the area, but failed to persist to the first winter, while others were present in high numbers throughout the year. The duration of settlement was species- specific, ranging from several weeks to several months. Body size at settlement decreased with increasing temperature during larval development. Growth potential and early mortality of a number of decapod species was examined by separation of successive moult instars from length-frequency distributions. Seasonal lows in abundance and biomass of young of the year and for previously estab- lished decapod individuals were identified at the end of July and early August, which may represent the most suitable time to release juveniles for stock-enhancement purposes. Community structure differed between settlement season and over-wintering periods. Young-of-the-year community structure differed from that of previously established individuals, with higher abundance and num- ber of species recorded for the former. The data represent a baseline study of a widely distributed community and may support further work on species interactions, improving the accuracy of predic- tion of annual recruitment fluctuations. KEY WORDS: Community · Decapod · Recruitment · Seasonal variation Resale or republication not permitted without written consent of the publisher INTRODUCTION strong 1995, Pile et al.
    [Show full text]