MICROBIAL BIOTECHNOLOGY: Fundamentals of Applied Microbiology, Second Edition

Total Page:16

File Type:pdf, Size:1020Kb

MICROBIAL BIOTECHNOLOGY: Fundamentals of Applied Microbiology, Second Edition This page intentionally left blank P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 MICROBIAL BIOTECHNOLOGY Knowledge in microbiology is growing exponentially through the determination of genomic sequences of hundreds of microorganisms and the invention of new technologies, such as genomics, transcriptomics, and proteomics, to deal with this avalanche of information. These genomic data are now exploited in thousands of applications, rang- ing from medicine, agriculture, organic chemistry, public health, and biomass conversion, to biomining. Microbial Biotechnology focuses on uses of major soci- etalimportance,enablinganin-depthanalysisofthesecriticallyimportantappli- cations. Some, such as wastewater treatment, have changed only modestly over time; others, such as directed molecular evolution, or “green” chemistry, are as current as today’s headlines. Thisfullyrevisedsecondeditionprovidesanexcitinginterdisciplinaryjourney through the rapidly changing landscape of discovery in microbial biotechnology. An ideal text for courses in applied microbiology and biotechnology, this book will also serve as an invaluable overview of recent advances in this field for pro- fessional life scientists and for the diverse community of other professionals with interests in biotechnology. Alexander N. Glazer is a biochemist and molecular biologist and has been on the faculty of the University of California since 1964. He is a Professor of the Graduate School in the Department of Molecular and Cell Biology at the University of Cali- fornia, Berkeley. Dr. Glazer is a member of the National Academy of Sciences and a Fellow of the American Academy of Arts and Sciences, the American Academy of Microbiology, the American Association for the Advancement of Science, and the California Academy of Sciences. He was twice the recipient of a Guggenheim Fellowship. He was the recipient of the Botanical Society of America Darbaker Prize, 1980 and the National Academy of Sciences Scientific Reviewing Prize, 1991, a lecturer of the Foundation for Microbiology, 1996–98; and a National GuestLecturer,NewZealandInstituteofChemistry,1999.Dr.Glazerhasauthored over 250 research papers and reviews. He is a co-inventor on more than 40 U.S. patents. Since 1996, he has served as a member of the Editorial Affairs Committee of Annual Reviews, Inc. Hiroshi Nikaido is a biochemist and microbiologist. He received his M.D. from Keio University in Japan in 1955 and became a faculty member at Harvard Med- ical School in 1963, before moving to University of California in 1969. He is a Professor of Biochemistry and Molecular Biology in the Department of Molecu- lar and Cell Biology at the University of California, Berkeley.Dr. Nikaido is a Fellow of the American Academy of Arts and Sciences and the American Academy of Microbiology. He was the recipient of a Guggenheim Fellowship, NIH Senior International Fellowship, Paul Ehrlich prize (1969), Hoechst-Roussel Award of American Society for Microbiology (1984), and Freedom-to-Discover Award for Distinguished Research in Infectious Diseases from Bristol-Myers Squibb (2004). He was an Editor of Journal of Bacteriology from 1998 to 2002. Dr. Nikaido has authored nearly 300 research papers and reviews. i P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 MICROBIAL BIOTECHNOLOGY Knowledge in microbiology is growing exponentially through the determination of genomic sequences of hundreds of microorganisms and the invention of new technologies, such as genomics, transcriptomics, and proteomics, to deal with this avalanche of information. These genomic data are now exploited in thousands of applications, rang- ing from medicine, agriculture, organic chemistry, public health, and biomass conversion, to biomining. Microbial Biotechnology focuses on uses of major soci- etalimportance,enablinganin-depthanalysisofthesecriticallyimportantappli- cations. Some, such as wastewater treatment, have changed only modestly over time; others, such as directed molecular evolution, or “green” chemistry, are as current as today’s headlines. Thisfullyrevisedsecondeditionprovidesanexcitinginterdisciplinaryjourney through the rapidly changing landscape of discovery in microbial biotechnology. An ideal text for courses in applied microbiology and biotechnology, this book will also serve as an invaluable overview of recent advances in this field for pro- fessional life scientists and for the diverse community of other professionals with interests in biotechnology. Alexander N. Glazer is a biochemist and molecular biologist and has been on the faculty of the University of California since 1964. He is a Professor of the Graduate School in the Department of Molecular and Cell Biology at the University of Cali- fornia, Berkeley. Dr. Glazer is a member of the National Academy of Sciences and a Fellow of the American Academy of Arts and Sciences, the American Academy of Microbiology, the American Association for the Advancement of Science, and the California Academy of Sciences. He was twice the recipient of a Guggenheim Fellowship. He was the recipient of the Botanical Society of America Darbaker Prize, 1980 and the National Academy of Sciences Scientific Reviewing Prize, 1991, a lecturer of the Foundation for Microbiology, 1996–98; and a National GuestLecturer,NewZealandInstituteofChemistry,1999.Dr.Glazerhasauthored over 250 research papers and reviews. He is a co-inventor on more than 40 U.S. patents. Since 1996, he has served as a member of the Editorial Affairs Committee of Annual Reviews, Inc. Hiroshi Nikaido is a biochemist and microbiologist. He received his M.D. from Keio University in Japan in 1955 and became a faculty member at Harvard Med- ical School in 1963, before moving to University of California in 1969. He is a Professor of Biochemistry and Molecular Biology in the Department of Molecu- lar and Cell Biology at the University of California, Berkeley.Dr. Nikaido is a Fellow of the American Academy of Arts and Sciences and the American Academy of Microbiology. He was the recipient of a Guggenheim Fellowship, NIH Senior International Fellowship, Paul Ehrlich prize (1969), Hoechst-Roussel Award of American Society for Microbiology (1984), and Freedom-to-Discover Award for Distinguished Research in Infectious Diseases from Bristol-Myers Squibb (2004). He was an Editor of Journal of Bacteriology from 1998 to 2002. Dr. Nikaido has authored nearly 300 research papers and reviews. i P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 MOLDS 1 Penicillium chrysogenum 2 2 Monascus purpurea 3 Penicillium notatum 4 Aspergillus niger 5 3 1 5 Aspergillus oryzae 4 YEASTS 1 Saccharomyces cerevisiae 3 4 2 Candida utilis 2 5 3 Aureobasidium pullulans 13 12 4 Trichosporon cutaneum 6 1 11 14 5 Saccharomycopsis capsularis 15 6 Saccharomycopsis lipolytica 10 7 7 Hanseniaspora guilliermondii 9 8 8 Hansenula capsulata 9 Saccharomyces carlsbergensis 10 Saccharomyces rouxii 11 Rhodotorula rubra 12 Phaffia rhodozyma 13 Cryptococcus laurentii 14 Metschnikowia pulcherrima 15 Rhodotorula pallida Cultures of molds and yeasts on nutrient agar in glass Petri dishes. From H. Phaff, Indus- trial microorganisms, Scientific American, September 1981. Copyright © 1981 by Scientific American, Inc. All rights reserved. ii P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 MICROBIAL BIOTECHNOLOGY Fundamentals of Applied Microbiology, Second Edition Alexander N. Glazer University of California, Berkeley Hiroshi Nikaido University of California, Berkeley iii CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521842105 © Alexander N. Glazer and Hiroshi Nikaido 2007 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2007 ISBN-13 978-0-511-34136-6 eBook (EBL) ISBN-10 0-511-34136-9 eBook (EBL) ISBN-13 978-0-521-84210-5 hardback ISBN-10 0-521-84210-7 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 We dedicate this book to Eva and Kishiko, for the gift of years of support, tolerance, and patience. v P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 vi P1: JZP 0521842107pre CUFX119/Glazer 0 521 84210 7 June 21, 2007 19:13 Contents in Brief Preamble page xiii Acknowledgments xvii 1 Microbial Diversity1 2 Microbial Biotechnology: Scope, Techniques, Examples 45 3 Production of Proteins in Bacteria and Yeast 90 4 The World of “Omics”: Genomics, Transcriptomics, Proteomics, and Metabolomics 147 5 Recombinant and Synthetic Vaccines 169 6 Plant–Microbe Interactions 203 7 Bacillus thuringiensis (Bt) Toxins: Microbial Insecticides 234 8 Microbial Polysaccharides and Polyesters 267 9 Primary Metabolites: Organic Acids and Amino Acids 299 10 Secondary Metabolites: Antibiotics and More 324 11 Biocatalysis in Organic Chemistry 398 12 Biomass
Recommended publications
  • The Structure/Function of New Insecticidal Proteins and Regulatory Challenges for Commercialization
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/100278/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Moar, William, Berry, Colin and Narva, Kenneth 2017. The structure/function of new insecticidal proteins and regulatory challenges for commercialization. Journal of Invertebrate Pathology 142 , pp. 1-4. 10.1016/j.jip.2017.02.001 file Publishers page: https://doi.org/10.1016/j.jip.2017.02.001 <https://doi.org/10.1016/j.jip.2017.02.001> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. The structure/function of new insecticidal proteins and regulatory challenges for commercialization William Moar, Colin Berry and Kenneth Narva Genetically modified crops produced by biotechnology methods have provided grower benefits since 1995 including improved protection of crop yield, reduced input costs, and a reduced reliance on chemical pesticides (Klumper and Qaim, 2014). These benefits have driven annual increases in worldwide adoption of GM crops, with the largest number of hectares being grown in the Americas (ISAAA 2014).
    [Show full text]
  • WO 2019/067496 Al 04 April 2019 (04.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/067496 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: C07K 14/00 (2006.01) A01N 63/00 (2006.01) C12N 15/63 (2006.01) (21) International Application Number: PCT/US20 18/052788 (22) International Filing Date: 26 September 2018 (26.09.2018) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/563,228 26 September 2017 (26.09.2017) US (71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US). (72) Inventors: ZACK, Marc D.; 9330 Zionsville Road, Indi¬ anapolis, IN 46268 (US). SOPKO, Megan; 9330 Zionsville Road, Indianapolis, IN 46268 (US). HASLER, James M.; 9330 Zionsville Road, Indianapolis, IN 46268 (US). (74) Agent: RIVAS, Marcos; Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Appendix 5.3 MON 810 Literature Review – List of All Hits (June 2016
    Appendix 5.3 MON 810 literature review – List of all hits (June 2016-May 2017) -Web of ScienceTM Core Collection database 12/8/2016 Web of Science [v.5.23] ­ Export Transfer Service Web of Science™ Page 1 (Records 1 ­­ 50) [ 1 ] Record 1 of 50 Title: Ground beetle acquisition of Cry1Ab from plant­ and residue­based food webs Author(s): Andow, DA (Andow, D. A.); Zwahlen, C (Zwahlen, C.) Source: BIOLOGICAL CONTROL Volume: 103 Pages: 204­209 DOI: 10.1016/j.biocontrol.2016.09.009 Published: DEC 2016 Abstract: Ground beetles are significant predators in agricultural habitats. While many studies have characterized effects of Bt maize on various carabid species, few have examined the potential acquisition of Cry toxins from live plants versus plant residue. In this study, we examined how live Bt maize and Bt maize residue affect acquisition of Cry1Ab in six species. Adult beetles were collected live from fields with either current­year Bt maize, one­year­old Bt maize residue, two­year­old Bt maize residue, or fields without any Bt crops or residue for the past two years, and specimens were analyzed using ELISA. Observed Cry1Ab concentrations in the beetles were similar to that reported in previously published studies. Only one specimen of Cyclotrachelus iowensis acquired Cry1Ab from two­year­old maize residue. Three species acquired Cry1Ab from fields with either live plants or plant residue (Cyclotrachelus iowensis, Poecilus lucublandus, Poecilus chalcites), implying participation in both live­plant and residue­based food webs. Two species acquired toxin from fields with live plants, but not from fields with residue (Bembidion quadrimaculatum, Elaphropus incurvus), suggesting participation only in live plant­based food webs.
    [Show full text]
  • TECHNISCHE UNIVERSITÄT MÜNCHEN Structural And
    TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Chemie Lehrstuhl für Biochemie Structural and biochemical characterization of the YaxAB pore- forming toxin from Yersinia enterocolitica Bastian Loong Wang Yung Shan Bräuning Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzende/-r: Prof. Dr. Matthias Feige Prüfende/-r der Dissertation: 1. Prof. Dr. Michael Groll 2. Prof. Dr. Franz Hagn 3. Prof. Dr. Michal Sharon (schriftliche Begutachtung), 4. Prof. Dr. Tanja Gulder (mündliche Prüfung) Die Dissertation wurde am 09.04.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 23.05.2018 angenommen. Table of contents Chapter 1 ...................................................................................................................................................................... 11 Introduction ............................................................................................................................................................. 11 1.1 The enterobacteriaceae: successful pathogens with a broad host spectrum .................... 11 1.1.1 The human pathogen Yersinia enterocolitica ........................................................................ 12 1.1.2 The insect pathogen Photorhabdus luminescens .................................................................. 12 1.2 Pore-forming toxins (PFT) as virulence
    [Show full text]
  • Nor Hawani Salikin
    Characterisation of a novel antinematode agent produced by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Nor Hawani Salikin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science August 2020 Thesis/Dissertation Sheet Surname/Family Name : Salikin Given Name/s : Nor Hawani Abbreviation for degree as give in the University : Ph.D. calendar Faculty : UNSW Faculty of Science School : School of Biological, Earth and Environmental Sciences Characterisation of a novel antinematode agent produced Thesis Title : by the marine epiphytic bacterium Pseudoalteromonas tunicata and its impact on Caenorhabditis elegans Abstract 350 words maximum: (PLEASE TYPE) Drug resistance among parasitic nematodes has resulted in an urgent need for the development of new therapies. However, the high re-discovery rate of antinematode compounds from terrestrial environments necessitates a new repository for future drug research. Marine epiphytic bacteria are hypothesised to produce nematicidal compounds as a defence against bacterivorous predators, thus representing a promising, yet underexplored source for antinematode drug discovery. The marine epiphytic bacterium Pseudoalteromonas tunicata is known to produce a number of bioactive compounds. Screening genomic libraries of P. tunicata against the nematode Caenorhabditis elegans identified a clone (HG8) showing fast-killing activity. However, the molecular, chemical and biological properties of HG8 remain undetermined. A novel Nematode killing protein-1 (Nkp-1) encoded by an uncharacterised gene of HG8 annotated as hp1 was successfully discovered through this project. The Nkp-1 toxicity appears to be nematode-specific, with the protein being highly toxic to nematode larvae but having no impact on nematode eggs.
    [Show full text]
  • An Evolutionary Perspective on Human Cross-Sensitivity to Tree Nut and Seed Allergens," Aliso: a Journal of Systematic and Evolutionary Botany: Vol
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 2 Article 3 2015 An Evolutionary Perspective on Human Cross- sensitivity to Tree Nut and Seed Allergens Amanda E. Fisher Rancho Santa Ana Botanic Garden, Claremont, California, [email protected] Annalise M. Nawrocki Pomona College, Claremont, California, [email protected] Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Evolution Commons, and the Nutrition Commons Recommended Citation Fisher, Amanda E. and Nawrocki, Annalise M. (2015) "An Evolutionary Perspective on Human Cross-sensitivity to Tree Nut and Seed Allergens," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol33/iss2/3 Aliso, 33(2), pp. 91–110 ISSN 0065-6275 (print), 2327-2929 (online) AN EVOLUTIONARY PERSPECTIVE ON HUMAN CROSS-SENSITIVITY TO TREE NUT AND SEED ALLERGENS AMANDA E. FISHER1-3 AND ANNALISE M. NAWROCKI2 1Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 (Current affiliation: Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840); 2Pomona College, 333 North College Way, Claremont, California 91711 (Current affiliation: Amgen Inc., [email protected]) 3Corresponding author ([email protected]) ABSTRACT Tree nut allergies are some of the most common and serious allergies in the United States. Patients who are sensitive to nuts or to seeds commonly called nuts are advised to avoid consuming a variety of different species, even though these may be distantly related in terms of their evolutionary history.
    [Show full text]
  • Rubina Mushtaq (M.Phil)
    Production of Bacillus thuringiensis Recombinant Cry Proteins and Analysis of Mode of Action of their Toxicity Thesis Submitted to University of the Punjab, Lahore for the Award of Degree of Doctor of Philosophy in Biological Sciences By Rubina Mushtaq (M.Phil) Research Supervisor Prof. Dr. A.R. Shakoori Aizaz-i-Kamal, Tamgha-i-Imtiaz, ECO Laureate Distinguished National Professor, Professor Emeritus School of Biological Sciences, University of the Punjab School of Biological Sciences, University of the Punjab, Lahore, Pakistan 2018 i DEDICATION I would like to dedicate this work to my parents, my husband and to my loving children who helped me unconditionally ii SUMMARY The Cry insecticidal proteins of Bacillus thuringiensis (Bt) are produced by transgenic crops for effective and environmentally-safe insect pest control. These transgenic Bt crops are considered to be the most successful agricultural biotechnology for insect control, yet their sustainability is threatened by the evolution of resistance in targeted pests. The evidence suggests that this resistance is probably due to the alterations in recognition of Cry toxin receptors in the insect midgut membrane. Consequently, information is needed on determinants of receptor recognition for designing improved toxins and to adopt effective insect resistance management practices. In this study four Cry proteins, Cry1Ac, Cry2Ac7, Cry1Fa and Cry1Ie2 were expressed either in E. coli expression system or in native Bt strain. Insoluble Cry1Ac and Cry2Ac7 proteins were refolded and purified prior to use. Bioassays of Cry1Ac (C-terminally truncated version) and Cry2Ac7 protoxins were performed with an armyworm, Spodoptera litura Fabricius (Lepidoptera: Noctuidae), a polyphagous cosmopolitan insect which is a serious crop pest of many Asian countries including Pakistan.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,537,914 B1 Roux Et Al
    USOO7537914B1 (12) United States Patent (10) Patent No.: US 7,537,914 B1 ROux et al. (45) Date of Patent: May 26, 2009 (54) NUCLEICACID AND ALLERGENIC (58) Field of Classification Search ................ 435/69.1, POLYPEPTIDESENCODED THEREBY IN 435/252.3,320.1; 530/350; 536/23.5 CASHEW NUTS (ANACARDIUM See application file for complete search history. OCCIDENTALE) (56) References Cited (75) Inventors: Kenneth Roux, Tallahassee, FL (US); U.S. PATENT DOCUMENTS Shridhar K. Sathe, Tallahassee, FL (US); Jason M. Robotham, Tallahassee, 6,362,399 B1* 3/2002 Kinney et al. ............... 800/312 FL (US); Suzanne S. Teuber, Davis, CA (US) OTHER PUBLICATIONS Wang etal, J Allergy Clin Immunol 110: 160-6, 2002.* (73) Assignee: Florida State University Research Chica et al. Curr Opin Biotechnol 16(4):378-84. Aug. 2005.* Foundation, Inc., Tallahassee, FL (US) Witkowski et al. Biochemistry 38(36): 11643-50, Sep. 7, 1999.* Stanley et al. Arch Biochem Biophys 342(2): 244-53, Jun. 1997.* (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 * cited by examiner U.S.C. 154(b) by 323 days. Primary Examiner Phuong Huynh (74) Attorney, Agent, or Firm Allen, Dyer, Doppelt, (21) Appl. No.: 10/529,602 Milbrath & Gilchrist, PA. (22) PCT Filed: Nov. 4, 2003 (57) ABSTRACT (86). PCT No.: PCT/USO3F34960 The invention describes an isolated nucleic acid sequence S371 (c)(1), comprising the nucleotide sequence of SEQ ID NO:1 or a (2), (4) Date: Mar. 30, 2005 degenerate variant of SEQ ID NO:1. The nucleic acid sequence encodes an Ig-Ebinding immunogenic polypeptide (87) PCT Pub.
    [Show full text]
  • Souissi, Wided.Pdf
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Cytocidal activity of Cry41Aa, an anticancer toxin from Bacillus thuringiensis Wided Souissi Submitted for the award of Degree of Doctor of Philosophy Department of Biochemistry School of Life Sciences University of Sussex July 2018 2 Work not submitted elsewhere for examination I hereby declare that this thesis has not been submitted in whole or in part to this or any other University for the award of a degree. Wided Souissi 3 Acknowledgements I would like to express my deepest gratitude to my supervisor Dr Neil Crickmore for his excellent guidance, encouragement and support throughout my PhD research study. I have been extremely lucky to have a supervisor who is a great scientist and a wonderful person that cared so much about my work, and who responded to my questions and queries so promptly. Special thanks go to Prof Michelle West and Prof Simon Morley for the use of tissue culture facilities, Dr Roger Phillips for assistance with the DIC microscopy and Dr George Giamas for the use of his lab equipment when needed.
    [Show full text]
  • Impact of High Pressure Processing on Immunoreactivity and Some Physico-Chemical Properties of Almond Milk THESIS Presented in P
    Impact of High Pressure Processing on Immunoreactivity and Some Physico-chemical Properties of Almond Milk THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Santosh Dhakal Graduate Program in Food Science and Technology The Ohio State University 2013 Master's Examination Committee: Professor V. M. Balasubramaniam, Advisor Professor Sheryl Barringer Professor Monica Giusti Copyrighted by Santosh Dhakal 2013 ABSTRACT Almond milk as a beverage has recently gained attention with increase in consumer awareness about health benefits of plant based beverages. The objective of this research was to investigate the influence of high pressure processing (HPP) on residual mmunoreactivity, protein solubility, and other selected quality attributes. Almond milk was prepared by disintegrating 10% almonds with water and were subjected to high pressure processing (HPP; 450 and 600 MPa at 30oC up to 600 s) and thermal processing (TP; 72, 85 and 99 oC, 0.1 MPa up to 600 s). After HPP (for all holding times), amandin, a key thermally resistant almond allergen, can no longer be detected by the anti-conformational epitopes MAb in ELISA while signal generated from the anti-linear epitopes MAb was reduced by half (P < 0.05). On the other hand, most TP samples did not show significant reductions in immunoreactivity (P > 0.05) unless processed at 85 and 99 °C for 300 s. Western blot (applicable for soluble proteins) and dot blot (applicable for soluble and insoluble proteins) also confirmed the loss of immunoreactivity by both antibodies for HPP almond milk.
    [Show full text]
  • C. Elegans Monitor Energy Status to Trigger Innate Immune Responses Via AMPK Pathway Against Bacterial Pathogens
    C. elegans monitor energy status to trigger innate immune responses via AMPK pathway against bacterial pathogens Donghai Peng ( [email protected] ) Huazhong Agricultural University Shouyong Ju Huazhong Agricultural University Hanqiao Chen Huazhong Agricultural University Shaoying Wang Huazhong Agricultural University Jian Lin Huazhong Agricultural University Ra Aroian University of Massachusetts Medical School Ming Sun Huazhong Agricultural University Article Keywords: surveillance systems, potassium leakage, AMP-activated protein kinase, innate immune responses, Caenorhabditis elegans, Bacillus thuringiensis Posted Date: June 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-590514/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/35 Abstract Pathogen recognition and triggering pattern of host innate immune system is critical to understanding pathogen-host interaction. Cellular surveillance systems have been reported as an important strategy for the identication of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found a new approach for surveillance systems to sense the pathogens. We report that Bacillus thuringiensis produced Cry5Ba, a classical PFTs, leading mitochondrial damage and energy imbalance by causing potassium ion leakage, instead of directly targeting mitochondria. Interestingly, C. elegans can monitor intracellular energy status through the mitochondrial surveillance system to triggered innate immune responses against pathogenic attack via AMP-activated protein kinase (AMPK). Obviously, it is common that pathogens produce toxins to cause potassium leakage. Our study indicate that the imbalance of energy status is a common result of pathogen infection.Besides. AMPK-dependent surveillance system can act as a new stratege for host to recognize and defense pathogens.
    [Show full text]
  • The Pesticidal Cry6aa Toxin from Bacillus Thuringiensis Is Structurally Similar to Hlye-Family Alpha Pore-Forming Toxins
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2016-08-30 The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins Alexey Dementiev Shamrock Structures LLC Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Bacteriology Commons, Biochemistry, Biophysics, and Structural Biology Commons, and the Biological Factors Commons Repository Citation Dementiev A, Sitaram A, Hu Y, Aroian RV, Berry C. (2016). The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. Open Access Articles. https://doi.org/10.1186/s12915-016-0295-9. Retrieved from https://escholarship.umassmed.edu/ oapubs/2919 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Dementiev et al. BMC Biology (2016) 14:71 DOI 10.1186/s12915-016-0295-9 RESEARCH ARTICLE Open Access The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE- family alpha pore-forming toxins Alexey Dementiev1, Jason Board2, Anand Sitaram3, Timothy Hey4,7, Matthew S. Kelker4,10, Xiaoping Xu4, Yan Hu3, Cristian Vidal-Quist2,8, Vimbai Chikwana4, Samantha Griffin4, David McCaskill4, Nick X. Wang4, Shao-Ching Hung5, Michael K. Chan6, Marianne M. Lee6, Jessica Hughes2,9, Alice Wegener2, Raffi V.
    [Show full text]