Variable Star Section Circular
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Search for Transiting Extrasolar Planets in the Open Cluster M52
THE SEARCH FOR TRANSITING EXTRASOLAR PLANETS IN THE OPEN CLUSTER M52 A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree Master of Sciences in Astronomy by Tiffany M. Borders Summer 2008 SAN DIEGO STATE UNIVERSITY The Undersigned Faculty Committee Approves the Thesis of Tiffany M. Borders: The Search for Transiting Extrasolar Planets in the Open Cluster M52 Eric L. Sandquist, Chair Department of Astronomy William Welsh Department of Astronomy Calvin Johnson Department of Physics Approval Date iii Copyright 2008 by Tiffany M. Borders iv DEDICATION To all who seek new worlds. v Success is to be measured not so much by the position that one has reached in life as by the obstacles which he has overcome. –Booker T. Washington All the world’s a stage, And all the men and women merely players. They have their exits and their entrances; And one man in his time plays many parts... –William Shakespeare, “As You Like It”, Act 2 Scene 7 vi ABSTRACT OF THE THESIS The Search for Transiting Extrasolar Planets in the Open Cluster M52 by Tiffany M. Borders Master of Sciences in Astronomy San Diego State University, 2008 In this survey we attempt to discover short-period Jupiter-size planets in the young open cluster M52. Ten nights of R-band photometry were used to search for planetary transits. We obtained light curves of 4,128 stars and inspected them for variability. No planetary transits were apparent; however, some interesting variable stars were discovered. In total, 22 variable stars were discovered of which, 19 were not previously known as variable. -
SATELLITE COMMUNICATION UNIT I OVERVIEW of SATELLITE SYSTEMS, ORBITS and LAUNCHING METHODS Introduction
www.jntuhweb.com JNTUH WEB SATELLITE COMMUNICATION UNIT I OVERVIEW OF SATELLITE SYSTEMS, ORBITS AND LAUNCHING METHODS Introduction – Frequency allocations for satellite services – Intelsat – U.S domsats – Polar orbiting satellites – Problems – Kepler’s first law – Kepler’s second law – Kepler’s third law – Definitions of terms for earth – Orbiting satellites – Orbital elements – Apogee and perigee heights – Orbital perturbations – Effects of a non-spherical earth – Atmospheric drag – Inclined orbits – Calendars – Universal time – Julian dates – Sidereal time – The orbital plane – The geocentric – Equatorial coordinate system – Earth station referred to the IJK frame – The topcentric – Horizon co-ordinate system – The subsatellite point – Predicting satellite position. PART A 1. What is Satellite? Mention the types. An artificial body that is projected from earth to orbit either earth (or) another body of solar systems. Types: Information satellites and Communication Satellites 2. State Kepler’s first law. It states that the path followed by the satellite around the primary will be an ellipse. An ellipse has two focal points F1 and F2. The center of mass of the two body system, termed the barycenter is always centered on one of the foci. e = [square root of ( a2– b2) ] / a 3. State Kepler’s second law. It states that for equal time intervals, the satellite will sweep out equal areas in its orbital Skyupsmediaplane, focused at the barycenter. 4. State Kepler’s third law. It states that the square of the periodic time of orbit is perpendicular to the cube of the mean distance between the two bodies. JNTUH WEB www.jntuhweb.com JNTUH WEB a3= 3 / n2 Where, n = Mean motion of the satellite in rad/sec. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
Martian Ice How One Neutrino Changed Astrophysics Remembering Two Former League Presidents
Published by the Astronomical League Vol. 71, No. 3 June 2019 MARTIAN ICE HOW ONE NEUTRINO 7.20.69 CHANGED ASTROPHYSICS 5YEARS REMEMBERING TWO APOLLO 11 FORMER LEAGUE PRESIDENTS ONOMY T STR O T A H G E N P I E G O Contents N P I L R E B 4 . President’s Corner ASTRONOMY DAY Join a Tour This Year! 4 . All Things Astronomical 6 . Full Steam Ahead OCTOBER 5, From 37,000 feet above the Pacific Total Eclipse Flight: Chile 7 . Night Sky Network 2019 Ocean, you’ll be high above any clouds, July 2, 2019 For a FREE 76-page Astronomy seeing up to 3¼ minutes of totality in a PAGE 4 9 . Wanderers in the Neighborhood dark sky that makes the Sun’s corona look Day Handbook full of ideas and incredibly dramatic. Our flight will de- 10 . Deep Sky Objects suggestions, go to: part from and return to Santiago, Chile. skyandtelescope.com/2019eclipseflight www.astroleague.org Click 12 . International Dark-Sky Association on "Astronomy Day” Scroll 14 . Fire & Ice: How One Neutrino down to "Free Astronomy Day African Stargazing Safari Join astronomer Stephen James ̃̃̃Changed a Field Handbook" O’Meara in wildlife-rich Botswana July 29–August 4, 2019 for evening stargazing and daytime PAGE 14 18 . Remembering Two Former For more information, contact: safari drives at three luxury field ̃̃̃Astronomical League Presidents Gary Tomlinson camps. Only 16 spaces available! Astronomy Day Coordinator Optional extension to Victoria Falls. 21 . Coming Events [email protected] skyandtelescope.com/botswana2019 22 . Gallery—Moon Shots 25 . Observing Awards Iceland Aurorae September 26–October 2, 2019 26 . -
134, December 2007
British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 134, December 2007 Contents AB Andromedae Primary Minima ......................................... inside front cover From the Director ............................................................................................. 1 Recurrent Objects Programme and Long Term Polar Programme News............4 Eclipsing Binary News ..................................................................................... 5 Chart News ...................................................................................................... 7 CE Lyncis ......................................................................................................... 9 New Chart for CE and SV Lyncis ........................................................ 10 SV Lyncis Light Curves 1971-2007 ............................................................... 11 An Introduction to Measuring Variable Stars using a CCD Camera..............13 Cataclysmic Variables-Some Recent Experiences ........................................... 16 The UK Virtual Observatory ......................................................................... 18 A New Infrared Variable in Scutum ................................................................ 22 The Life and Times of Charles Frederick Butterworth, FRAS........................24 A Hard Day’s Night: Day-to-Day Photometry of Vega and Beta Lyrae.........28 Delta Cephei, 2007 ......................................................................................... 33 -
Algol, Beta Lyrae, and W Serpentis: Some New Results for Three Well Studied Eclipsing Binaries
ALGOL, BETA LYRAE, AND W SERPENTIS: SOME NEW RESULTS FOR THREE WELL STUDIED ECLIPSING BINARIES Edward F. Guinan Department of Astronomy Si Astrophysics Villanova University Villanova, PA 19085 U.S.A. (Received 20 October, 1988 - accepted 20 March, 1989) ABSTRACT. The properties of the eclipsing binaries Algol, Beta Lyrae, and W Serpentis are discussed and new results are presented. The physical properties of the components of Algol are now Hell determined. High resolution spectroscopy of the H-alpha feature by Richards et »1. and by Billet et al. and spectroscopy of the ultraviolet resonance lines with the International Ultraviolet Explorer satellite reveal hot gas around the B8V primary. Gas flows also have been detected apparently originating from the low mast, cooler secondary component and flowing toward the hotter star through the Lagrangian LI point. Analysis of 6 years of multi-bandpass photoelectric photometry of Beta Lyrae indicates that systematic changes in light curves occur with a characteristic period of *275 * 25 dayt. These changes may arise from pulsations of the B8II star or from changes in the geometry of the disk component. Hitherto unpublished u, v, b, y, and H-alpha index light curves of N Ser are presented and discutted. W Ser is a very complex binary system that undergoet complicated, large changes in its light curvet. The physical properties of H Ser are only poorly known, but it probably contains one component at its Roche turface, rapidly transfering matter to a component which it embedded in a thick, opaque disk. In several respects, W Ser resembles an upscale version of a cataclysmic variable binary system. -
Alternate Constellation Guide
ARKANSAS NATURAL SKY ASSOCIATION LEARNING THE CONSTELLATIONS (Library Telescope Manual included) By Robert Togni Cover Image courtesy of Wikimedia. Do not write in this book, and return with scope to library. A personal copy of this guide can be obtained online at www.darkskyarkansas.com Preface This publication was inspired by and built upon Robert (Rocky) Togni’s quest to share the night sky with all who can be enticed under it. His belief is that the best place to start a relationship with the night sky is to learn the constellations and explore the principle ob- jects within them with the naked eye and a pair of common binoculars. Over a period of years, Rocky evolved a concept, using seasonal asterisms like the Summer Triangle and the Winter Hexagon, to create an easy to use set of simple charts to make learning one’s way around the night sky as simple and fun as possible. Recognizing that the most avid defenders of the natural night time environment are those who have grown to know and love nature at night and exploring the universe that it re- veals, the Arkansas Natural Sky Association (ANSA) asked Rocky if the Association could publish his guide. The hope being that making this available in printed form at vari- ous star parties and other relevant venues would help bring more people to the night sky as well as provide funds for the Association’s work. Once hooked, the owner will definitely want to seek deeper guides. But there is no better publication for opening the sky for the neophyte observer, making the guide the perfect companion for a library telescope. -
CURRICULUM VITAE: Dr Richard Ignace
CURRICULUM VITAE: Dr Richard Ignace Address: Department of Physics & Astronomy Office of Undergraduate Research College of Arts & Sciences Honors College EAST TENNESSEE STATE UNIVERSITY EAST TENNESSEE STATE UNIVERSITY Johnson City, TN 37614 Johnson City, TN 37614 Email: [email protected] [email protected] Web: faculty.etsu.edu/ignace www.etsu.edu/honors/ug research Phone/Fax: (423) 439-6904 / (423) 439-6905 (423) 439-6073 / (423) 439-6080 EDUCATION Ph.D. in Astronomy, University of Wisconsin 1996 M.S. in Physics, University of Wisconsin 1994 M.S. in Astronomy, University of Wisconsin 1993 B.S. in Astronomy, Indiana University 1991 POSITIONS HELD Aug 2016–present, Consultant, Tri-Alpha Energy Jan 2015–present, Director of Undergraduate Research Activities, East Tennessee State University Aug 2013–present, Full Professor: East Tennessee State University Aug 2007–Jul 2013, Associate Professor: East Tennessee State University Aug 2003–Jul 2007, Assistant Professor: East Tennessee State University Sep 2002–Jul 2003, Assistant Scientist: University of Wisconsin Aug 1999–Aug 2002, Visiting Assistant Professor: University of Iowa Nov 1996–Aug 1999, Postdoctoral Research Assistant: University of Glasgow SELECTED PROFESSIONAL ACTIVITIES Involved with service to discipline, institution, and community As Director of Undergraduate Research & Creative Activities, I administrate grant programs and activ- ities that support undergraduate scholarship, plus advocate for undergraduate research. Successful with publishing scholarly articles and competing for grant funding; author of the astron- omy textbook “Astro4U: An Introduction to the Science of the Cosmos,” of the popular astronomy book “Understanding the Universe,” and co-editor of the conference proceedings “The Nature and Evolution of Disks around Hot Stars” Principal organizer for STELLAR POLARIMETRY: FROM BIRTH TO DEATH, Jun 2011; and THE NATURE AND EVOLUTION OF DISKS AROUND HOT STARS, Jul 2004. -
Appendix: Spectroscopy of Variable Stars
Appendix: Spectroscopy of Variable Stars As amateur astronomers gain ever-increasing access to professional tools, the science of spectroscopy of variable stars is now within reach of the experienced variable star observer. In this section we shall examine the basic tools used to perform spectroscopy and how to use the data collected in ways that augment our understanding of variable stars. Naturally, this section cannot cover every aspect of this vast subject, and we will concentrate just on the basics of this field so that the observer can come to grips with it. It will be noticed by experienced observers that variable stars often alter their spectral characteristics as they vary in light output. Cepheid variable stars can change from G types to F types during their periods of oscillation, and young variables can change from A to B types or vice versa. Spec troscopy enables observers to monitor these changes if their instrumentation is sensitive enough. However, this is not an easy field of study. It requires patience and dedication and access to resources that most amateurs do not possess. Nevertheless, it is an emerging field, and should the reader wish to get involved with this type of observation know that there are some excellent guides to variable star spectroscopy via the BAA and the AAVSO. Some of the workshops run by Robin Leadbeater of the BAA Variable Star section and others such as Christian Buil are a very good introduction to the field. © Springer Nature Switzerland AG 2018 M. Griffiths, Observer’s Guide to Variable Stars, The Patrick Moore 291 Practical Astronomy Series, https://doi.org/10.1007/978-3-030-00904-5 292 Appendix: Spectroscopy of Variable Stars Spectra, Spectroscopes and Image Acquisition What are spectra, and how are they observed? The spectra we see from stars is the result of the complete output in visible light of the star (in simple terms). -
Download This Issue (Pdf)
Volume 46 Number 2 JAAVSO 2018 The Journal of the American Association of Variable Star Observers Unmanned Aerial Systems for Variable Star Astronomical Observations The NASA Altair UAV in flight. Also in this issue... • A Study of Pulsation and Fadings in some R CrB Stars • Photometry and Light Curve Modeling of HO Psc and V535 Peg • Singular Spectrum Analysis: S Per and RZ Cas • New Observations, Period and Classification of V552 Cas • Photometry of Fifteen New Variable Sources Discovered by IMSNG Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Laszlo L. Kiss Ulisse Munari Dunlap Institute of Astronomy Konkoly Observatory INAF/Astronomical Observatory and Astrophysics Budapest, Hungary of Padua and University of Toronto Asiago, Italy Toronto, Ontario, Canada Katrien Kolenberg Universities of Antwerp Karen Pollard Associate Editor and of Leuven, Belgium Director, Mt. John Observatory Elizabeth O. Waagen and Harvard-Smithsonian Center University of Canterbury for Astrophysics Christchurch, New Zealand Production Editor Cambridge, Massachusetts Michael Saladyga Nikolaus Vogt Kristine Larsen Universidad de Valparaiso Department of Geological Sciences, Valparaiso, Chile Editorial Board Central Connecticut State Geoffrey C. Clayton University, Louisiana State University New Britain, Connecticut Baton Rouge, Louisiana Vanessa McBride Kosmas Gazeas IAU Office of Astronomy for University of Athens Development; South African Athens, Greece Astronomical Observatory; and University of Cape Town, South Africa The Council of the American Association of Variable Star Observers 2017–2018 Director Stella Kafka President Kristine Larsen Past President Jennifer L. -
August 2017 BRAS Newsletter
August 2017 Issue Next Meeting: Monday, August 14th at 7PM at HRPO nd (2 Mondays, Highland Road Park Observatory) Presenters: Chris Desselles, Merrill Hess, and Ben Toman will share tips, tricks and insights regarding the upcoming Solar Eclipse. What's In This Issue? President’s Message Secretary's Summary Outreach Report - FAE Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO Perseid Meteor Shower Partial Solar Eclipse Observing Notes – Lyra, the Lyre & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society August 2017 President’s Message August, 21, 2017. Total eclipse of the Sun. What more can I say. If you have not made plans for a road trip, you can help out at HRPO. All who are going on a road trip be prepared to share pictures and experiences at the September meeting. BRAS has lost another member, Bart Bennett, who joined BRAS after Chris Desselles gave a talk on Astrophotography to the Cajun Clickers Computer Club (CCCC) in January of 2016, Bart became the President of CCCC at the same time I became president of BRAS. The Clickers are shocked at his sudden death via heart attack. Both organizations will miss Bart. His obituary is posted online here: http://www.rabenhorst.com/obituary/sidney-barton-bart-bennett/ Last month’s meeting, at LIGO, was a success, even though there was not much solar viewing for the public due to clouds and rain for most of the afternoon. BRAS had a table inside the museum building, where Ben and Craig used material from the Night Sky Network for the public outreach. -
Variable Star
Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.