Fundamentals of Chemistry of Biologically Active Substances

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals of Chemistry of Biologically Active Substances Kazan State University A.M. Butlerov Institute for Chemistry Irina Galkina FUNDAMENTALS OF CHEMISTRY OF BIOLOGICALLY ACTIVE SUBSTANCES Training manual for students of colleges and universities. (Compendium of the lecture course) «Approved by the training department for classical higher education as a learning aid for students of the major 020101.65 Chemistry» Kazan – 2006 2 УДК 544 ББК 24 Publication approved by the training center of the A.M. Butlerov Institute for Chemistry of Kazan State University. Author: Galkina I.V. – Cand. Chi. Sci., docent of chemical faculty of KSU.. Reviewer: Terenin I.V. – Doctor Chi. Sci., professor of chemical faculty of MSU. Fundamentals of chemistry of biologically active substances: Training manual for students of colleges and universities.. The book is the compendium of the lecture course in chemistry of biologically active substances. It consists of four parts: medicines, drugs, pesticides and warfare agents. The information is delivered in form of lectures (17 lectures in total), every lecture course has a short introduction to the topic with historical background. To ensure the thrill and better understanding the author has adapted both pure scientifical articles and extracts from popular science articles about novel research in this interesting branch of chemistry. The book is thought to be used by students and teachers in chemical, pharmaceutical, medical and biological colleges and universities. The author hopes that this learning aid will help broaden students’ outlook and improve academically in the chemistry of biologically active substances. 3 TABLE OF CONTENT TABLE OF CONTENT....................................................................................................................................3 FOREWORD....................................................................................................................................................6 MEDICINES.....................................................................................................................................................9 LECTURE I. HISTORICAL OVERVIEW OF MEDICAL AND PHARMACEUTICAL PROFESSIONS..9 LECTURE II. DEVELOPMENT OF ORGANIC CHEMISTRY OF MEDICAL COMPOUNDS................9 1. Basic requirements for medicines............................................................................................17 2. Preclinical development of new chemical entities (NCEs)........................................................17 LECTURE III. DRUG DESIGN.....................................................................................................................19 LECTURE IV. CORRELATIONS BETWEEN STRUCTURE AND BIOLOGICAL ACTIVITY..............19 1. Effects of alkyl groups.............................................................................................................19 2. Effects of hydroxyl groups.......................................................................................................19 3. Effects of halogens in organic compounds...............................................................................20 4. Effects of nitro- and nitroso groups.........................................................................................20 5. Effects of nitrogen-containing groups......................................................................................21 6. Effects of acid groups.............................................................................................................21 7. Effect of saturation.................................................................................................................21 8. Dependence of biological effects upon some physical and chemical properties.........................21 9. Main directions for drug discovery and drug design................................................................23 10. Principles of automatic (computer-assisted) screening..........................................................23 11. Reproduction of known physiologically active substances......................................................24 12. Modification of known structures..........................................................................................24 13. Introduction of pharmacophore.............................................................................................24 14. Molecular modelling.............................................................................................................25 15. Composite medicines............................................................................................................25 16. Methodology of combinatorial chemistry...............................................................................25 17. Search of antimetabolites (antagonists of natural metabolites) based upon metabolism investigation..........................................................................................................................25 18. Scheme of new drug development..........................................................................................26 19. Correlations between structure and biological activity..........................................................27 LECTURE V. CLASSIFICATION OF DRUGS. MAIN HUMAN DISEASES AND BASIC CLASSES OF HUMAN DRUGS...............................................................................................................................29 1. Main human diseases and basic classes of human drugs..........................................................30 LECTURE VI. SYNTHESIS OF CHEMICAL COMPOUNDS OF ALIPHATIC SERIES.........................33 1. Halogen-containing derivatives of acyclic hydrocarbons.........................................................33 2. Alcohols and their derivatives.................................................................................................34 3. Aldehydes and acids. Vitamins F and В15................................................................................35 4. Amino acids............................................................................................................................37 LECTURE VII. MEDICAL COMPOUNDS OF ACYCLIC AND AROMATIC SERIES...........................40 1. Substituted cyclohexanes.........................................................................................................40 2. Synthesis of aromatic derivatives............................................................................................42 LECTURE VIII. CHEMISTRY OF MEDICINES CONTAINING VARIOUS HETEROCYCLES...........47 1. Synthesis of anti-neoplastic remedies from ethyleneimine (aziridine) and ethylene oxide (oxirane) group. History of anti-neoplastic remedies..............................................................47 2. Antibiotics, containing tetratomic azetidine ring......................................................................49 3. Remedies basing on 5-membered heterocycles.........................................................................52 4. Antibacterial nitrofurans.........................................................................................................53 5. Other furan derivatives...........................................................................................................54 6. Derivatives of 6-membered rings.............................................................................................55 4 7. Quinoline derivatives..............................................................................................................56 8. Pyrimidine derivatives with antiviral (anti-HIV) activity..........................................................57 9. Conclusion.............................................................................................................................58 NARCOTIC SUBSTANCES...........................................................................................................................59 LECTURE IX. AND X. NARCOTICS AND ADDICTION. HISTORICAL REVIEW................................59 1. Historical review....................................................................................................................59 2. Addiction, what is it?..............................................................................................................60 3. What are narcotics and what they look like..............................................................................60 4. Classification of narcotic and psychotropic agents..................................................................61 5. Cannabis................................................................................................................................63 6. Opiate drugs...........................................................................................................................63 7. Hypnotics and sedatives..........................................................................................................65 8. Psychostimulants....................................................................................................................66 9. Hallucinogens........................................................................................................................67 10. Volatile substances (volatile addictions)................................................................................69 LECTURE XI. PHYSIOLOGICAL EFFECTS OF DRUGS.........................................................................69 1. Cannabis................................................................................................................................71
Recommended publications
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions
    PsychoTropical Commentaries (2016) 1:1 – 90 © Fernwell Publications Review Paper Monoamine Oxidase Inhibitors: a Review Concerning Dietary Tyramine and Drug Interactions PK Gillman PsychoTropical Research, Bucasia, Queensland, Australia Abstract This comprehensive monograph surveys original data on the subject of both dietary tyramine and drug interactions relevant to Monoamine Oxidase Inhibitors (MAOIs), about which there is much outdated, incorrect and incomplete information in the medical literature and elsewhere. Fewer foods than previously supposed have problematically high tyramine levels because international food hygiene regulations have improved both production and handling. Cheese is the only food that has, in the past, been associated with documented fatalities from hypertension, and now almost all ‘supermarket’ cheeses are perfectly safe in healthy-sized portions. The variability of sensitivity to tyramine between individuals, and the sometimes unpredictable amount of tyramine content in foods, means a little knowledge and care are still advised. The interactions between MAOIs and other drugs are now well understood, are quite straightforward, and are briefly summarized here (by a recognised expert). MAOIs have no apparently clinically relevant pharmaco-kinetic interactions, and the only significant pharmaco-dynamic interaction, other than the ‘cheese reaction’ (caused by indirect sympatho-mimetic activity [ISA], is serotonin toxicity ST (aka serotonin syndrome) which is now well defined and straightforward to avoid by not co-administering any drug with serotonin re-uptake inhibitor (SRI) potency. There are no therapeutically used drugs, other than SRIs, that are capable of inducing serious ST with MAOIs. Anaesthesia is not contra- indicated if a patient is taking MAOIs. Most of the previously held concerns about MAOIs turn out to be mythical: they are either incorrect, or over-rated in importance, or stem from apprehensions born out of insufficient knowledge.
    [Show full text]
  • Capacitive Sensing of N-Formylamphetamine Based on Immobilized Molecular Imprinted Polymers
    Biosensors and Bioelectronics 92 (2017) 741–747 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Capacitive sensing of N-formylamphetamine based on immobilized MARK molecular imprinted polymers Kinga Graniczkowskaa, Michael Pützb, Frank M. Hauserb, Sarah De Saegera, ⁎ Natalia V. Beloglazovaa, a Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium b Bundeskriminalamt, Forensic Science Institute, KT45 – Toxicology, 65173 Wiesbaden, Germany ARTICLE INFO ABSTRACT Keywords: A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine Capacitive biosensor precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers Molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing N-formyl amphetamine waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, Water analysis implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo- and UV-initiated polymerization techniques. The obtained particles were compared against commercially available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode’s surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formyl amphetamine was determined to be 10 μM in this capacitive biosensor system.
    [Show full text]
  • Methamphetamine Synthesis L ______I ______D ______ Most Commonly Synthesized E Controlled Substance ______3 ______8
    S ___________________________________ l Introductions and Welcome ___________________________________ i d ___________________________________ e Course coordinator’s welcome ___________________________________ Instructor introductions 1 Participant introductions ___________________________________ ___________________________________ ___________________________________ S ___________________________________ Administrative Information l ___________________________________ i ___________________________________ Breaks and start times d Restroom location ___________________________________ Eating or smoking in classroom e ___________________________________ ___________________________________ 2 ___________________________________ S ___________________________________ Course Overview & Objectives l ___________________________________ i ___________________________________ Purpose: Train first responders to… d Recognize a clandestine drug lab… ___________________________________ Recognize drug lab paraphernalia… e Implement appropriate actions. ___________________________________ ___________________________________ 3 ___________________________________ S ___________________________________ Drug Lab Definitions l ___________________________________ i ___________________________________ Lab—General Definition d Covert or secret illicit operation ___________________________________ Combination of apparatus & chemicals e Used to make controlled substances. ___________________________________ ___________________________________ 4 ___________________________________
    [Show full text]
  • Recent Trends in the Quantification of Biogenic Amines in Biofluids
    Journal of Clinical Medicine Review Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review Alina Plenis 1,* , Ilona Ol˛edzka 1 , Piotr Kowalski 1 , Natalia Mi˛ekus 1,2 and Tomasz B ˛aczek 1 1 Department of Pharmaceutical Chemistry, Medical University of Gda´nsk,Hallera 107, 80-416 Gda´nsk, Poland; [email protected] (I.O.); [email protected] (P.K.); [email protected] (N.M.); [email protected] (T.B.) 2 Department of Animal and Human Physiology, Faculty of Biology, University of Gda´nsk,Wita Stwosza 59, 80-308 Gda´nsk,Poland * Correspondence: [email protected]; Fax: +48-58-349-16-35 Received: 4 April 2019; Accepted: 6 May 2019; Published: 9 May 2019 Abstract: Biogenic amines (BAs) are bioactive endogenous compounds which play a significant physiological role in many cell processes like cell proliferation and differentiation, signal transduction and membrane stability. Likewise, they are important in the regulation of body temperature, the increase/decrease of blood pressure or intake of nutrition, as well as in the synthesis of nucleic acids and proteins, hormones and alkaloids. Additionally, it was confirmed that these compounds can be considered as useful biomarkers for the diagnosis, therapy and prognosis of several neuroendocrine and cardiovascular disorders, including neuroendocrine tumours (NET), schizophrenia and Parkinson’s Disease. Due to the fact that BAs are chemically unstable, light-sensitive and possess a high tendency for spontaneous oxidation and decomposition at high pH values, their determination is a real challenge. Moreover, their concentrations in biological matrices are extremely low.
    [Show full text]
  • Gut-Brain Axis Cross-Talk and Limbic Disorders As Biological Basis of Secondary TMAU
    Journal of Personalized Medicine Article Gut-Brain Axis Cross-Talk and Limbic Disorders as Biological Basis of Secondary TMAU Luigi Donato 1,2 , Simona Alibrandi 1,3, Concetta Scimone 1,2,* , Andrea Castagnetti 4, Giacomo Rao 5, Antonina Sidoti 1 and Rosalia D’Angelo 1 1 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; [email protected] (L.D.); [email protected] (S.A.); [email protected] (A.S.); [email protected] (R.D.) 2 Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy 4 Wellmicro Start Up, Innovative Spin-Off Alma Mater Studiorum Università di Bologna, 40129 Bologna, Italy; [email protected] 5 Central Health Superintendence, Prevention and Research Division, INAIL, 00144 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0902213136 Abstract: Background: Trimethylaminuria (TMAU) is a rare metabolic syndrome characterized by the accumulation and the excretion of trimethylamine (TMA), a volatile diet compound produced by gut microbiota. Gut microbiota alterations are mainly involved in the secondary TMAU, whose patients show also different psychiatric conditions. We hypothesized that the biological activity of several molecules acting as intermediate in TMA metabolic reaction might be at the basis of TMAU psychiatric comorbidities. Methods: To corroborate this hypothesis, we performed the analysis Citation: Donato, L.; Alibrandi, S.; of microbiota of both psychiatric suffering secondary TMAU patients and TMAU “mentally ill” Scimone, C.; Castagnetti, A.; Rao, G.; controls, comparing the alteration of metabolites produced by their gut bacteria possibly involved Sidoti, A.; D’Angelo, R.
    [Show full text]
  • List of Narcotic Substances Circulation of Which Is Restricted in Uzbekistan
    List of narcotic substances circulation of which is restricted in Uzbekistan 1. 2C-B(4-bromo-2,5-dimethoxyphenethylamine) 2. 3-methylfentanyl 3. 3-methylthiofentanyl 4. 3-Monoacetylmorphine 5. 4-methylaminorex 6. 6- Monoacetylmorphine 7. Acetorphine 8. Acetyl Dihydrocodeine 9. Acetyl-alfametilfentanil 10. Acetylated opium 11. Acetylcodeine 12. Acetylmethadol 13. Alfametadol 14. Alfatsetilmetadol 15. all fungi that contain Psilocine and Psilocybine 16. Allylprodine 17. Alpha Methylfentanyl 18. Alpha Metiltiofentanil 19. Alphaprodine 20. Anileridin 21. Benzethidine 22. Benzylmorphine 23. Betacetylmethadol 24. Betahydroxyfentanyl 25. Betameprodine 26. Betamethadol 27. Betaprodine 28. Bezitramide 29. Cannabis oil (hashish oil) 30. Cannabis, marihuana 31. Cathine ((+)-norpseudoephedrine) 32. Cathinone (l-alpha-aminopropiofenon) 33. Clonitazene 34. Cocaine 35. Codoxime 36. d- Methadone 37. DB [L-(3,4 - methylenedioxyphenyl) -2 butanamine] 38. Desmethylprodine; MPPP (1-methyl-4-phenyl-4-propionoxypiperidine) 39. Desomorphine 40. DET (N,N-diethyltryptamine) 41. Dexamphetamine 42. Diampromide 43. Diethyl phosphate 44. Diethylthiambutene 45. Dihydromorphine 46. Dimenoxadol 47. Dimepheptanol 48. Dimethylthiambutene 49. Dioxaphetyl butyrate 50. Diphenoxine 51. Dipipanone 52. DMA (2,5-dimethoxyamphetamine) 53. DMGP (dimetilgeptilpiran) 54. DMT (dimethyltryptamine) 55. DOB (d, L-2,5-dimethoxy-4-bromo-amphetamine) 56. DOC (d, L-2,5-dimethoxy-4-chloro-amphetamine) 57. DOET (2,5-dimethoxy-4-ethylamphetamine) 58. Drotebanol 59. Ecgonine 60. Ephedrone 61. Ethylmethylthiambutene 62. Eticyclidine 63. Etonitazene 64. Etorphine 65. Etoxeridine 66. Etryptamine 67. Furethidine 68. Hashish (Anasha, cannabis resin) 69. Heroin (Diacetylmorphine) 70. Hydrocodone 71. Hydrocodone phosphate 72. Hydromorphinol 73. Hydromorphone 74. Isomethadone 75. Ketobemidone 76. Khat 77. L- Methadone 78. Levomethorphan 79. Levomoramide 80. Levophenacylmorphan 81. Levorphanol 82. Lysergic acid and its preparations, that include d-Lysergide (LSD, LSD-25) 83.
    [Show full text]
  • What Foods Are Rich in Dietary TMAO Precursors?
    What is TMAO? TMAO (or trimethylamine N-oxide) is a metabolite produced by gut bacteria. Briefly, nutrients such as phosphatidylcholine (also known as lecithin), choline, and L-carnitine are abundant in animal-derived products such as red meat, egg yolk and full-fat dairy products. When consumed, these nutrients are processed by gut bacteria resulting in the release of various metabolites including TMA (trimethylamine) into the blood. TMA is then transported to the liver where it is converted into TMAO which has been shown to regulate various physiological processes involved in the development of atherosclerosis1,2. What foods are rich in dietary TMAO precursors? Red Meat Full-Fat Dairy Products Others Beef Whole milk Energy drinks Pork Eggs Dietary supplements Ham Yogurt Lamb Cream cheese Veal Butter Processed meats What dietary modification may help reduce an elevated TMAO? The composition of the diet can have a dramatic effect on the composition of the gut microbiome. Through dietary modifications, including the elimination of TMAO precursors, the gut bacteria may be altered and TMAO levels reduced. Foods commonly found in the Mediterranean diet such as cold-pressed olive oil, balsamic vinegar, and red wine are rich in the compound DMB (or 3,3-dimethyl-1-butanol), which has been shown to inhibit TMAO production3. My patient is taking a fish oil/krill oil supplement, will it falsely elevate their TMAO results? To date, we know that TMAO is found in high levels in certain types of seafood. A comprehensive list of the contents in supplements are rarely listed, so it is possible that TMAO may be present in fish oil/krill oil supplements.
    [Show full text]
  • Decision of the Government of the Russian Federation No
    DECISION OF THE GOVERNMENT OF THE RUSSIAN FEDERATION NO. 681 OF JUNE 30, 1998 ON THE APPROVAL OF THE LIST OF NARCOTIC DRUGS, PSYCHOTROPIC SUBSTANCES AND THEIR PRECURSORS THAT SHALL BE SUBJECT TO CONTROL IN THE RUSSIAN FEDERATION In accordance with the Federal Law on Narcotic Drugs and Psychotropic Substances (Sobraniye zakonodatelstva Rossiyskoy Federatsii, 1998, No. 2, item 219) the Government of the Russian Federation resolves: To approve the annexed enumeration of narcotic drugs, psychotropic substances and their precursors that shall be subject to control in the Russian Federation. To establish that the amendment of the said enumeration shall be carried out on presentation of the Ministry of Public Health of the Russian Federation jointly with the Ministry of Internal Affairs of the Russian Federation. Chairman of the Government of the Russian Federation Sergey Kirienko Enumeration of Narcotic Drugs, Psychotropic Substances and Their Precursors That Shall Be Subject to Control in the Russian Federation (Approved by the Decision of the Government of the Russian Federation No. 681 of June 30, 1998) List of Narcotic Drugs and Psychotropic Substances Whose Circulation in the Russian Federation Is Prohibited in Accordance with the Legislation of the Russian Federation and the International Treaties of the Russian Federation (List I) List of Narcotic Drugs and Psychotropic Substances Whose Circulation in the Russian Federation Is Restricted and in Whose Respect Control Measures Shall Be Established in Accordance with the Legislation of
    [Show full text]
  • Sulfur Trioxide Trimethylamine Complex
    Sulfur trioxide trimethylamine complex sc-229350 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Sulfur trioxide trimethylamine complex STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH4 HAZARD INSTABILITY2 W SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY: ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS C3-H9-N-O3-S, (CH3)3N.SO3 Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 1 Toxicity: 4 Body Contact: 4 Min/Nil=0 Low=1 Reactivity: 2 Moderate=2 High=3 Chronic: 3 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 12 EMERGENCY OVERVIEW RISK Harmful if swallowed. Causes severe burns. Risk of serious damage to eyes. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. ! Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. ! Ingestion of acidic corrosives may produce burns around and in the mouth. the throat and esophagus. <\p>. EYE ! The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating. ! If applied to the eyes, this material causes severe eye damage.
    [Show full text]
  • WO 2017/066488 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/066488 A l 2 0 April 2017 (20.04.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/485 (2006.01) A61P 25/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/5415 (2006.01) A61P 1/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/0569 10 HN, HR, HU, ID, IL, EST, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 13 October 2016 (13.10.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/240,965 13 October 2015 (13. 10.2015) US (84) Designated States (unless otherwise indicated, for every 62/300,014 25 February 2016 (25.02.2016) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: CHARLESTON LABORATORIES, INC.
    [Show full text]
  • Combating the Non-Medical Use of Prescription Drugs in Russia
    MINISTRY OF HEALTH OF THE RUSSIAN FEDERATION Combating the non-medical use of prescription drugs in Russia Bryun E.A., Professor, MD Chief substance abuse specialist of The Ministry of Health of the Russian Federation and Moscow Health Department Vienna, October 16-18, 2019. Two parts of the problem of non-medical use of synthetic opioids • Abuse of preparations containing opioids • Non-medical use of illicit synthetic preparations containing opioids Since the reasons of these two parts of the problem are different, measures of counteraction to these negative phenomena also differ Ensuring the availability of controlled substances used for medical purposes(1) • The Single Convention on Narcotic Drugs of 1961 (preamble: “the medical use of narcotic drugs continues to be indispensable for the relief of pain and suffering; adequate provision must be made to ensure the availability of narcotic drugs for such purposes”) • The Convention on Psychotropic Substances of 1971 (preamble: “the use of psychotropic substances for medical and scientific purposes is indispensable; their availability for such purposes should not be unduly restricted”) Ensuring the availability of controlled substances used for medical purposes(2) • In Russia, the availability of narcotic drugs and psychotropic substances to citizens who need them for medical purposes is one of the principles of state policy in drug trafficking (Federal Law No. 3-FZ of January 08, 1998 “On narcotic drugs and psychotropic substances”, article 4) • A patient has a right to relieving pain
    [Show full text]