Oregon Coast Trail, Central Coast NORTH SEE ADJOINING MAP Trail “OCT, N

Total Page:16

File Type:pdf, Size:1020Kb

Oregon Coast Trail, Central Coast NORTH SEE ADJOINING MAP Trail “OCT, N www.visittheoregoncoast.com NOTE: Content specified is from time of PDF creation. Please check website for up-to-date information or for changes. Maps are illustrative in nature and should be used for reference only. LAST UPDATED: 16.07.2018 MAPS DEVELOPED BY: 0 5.0 mi. 10.0 mi. Oregon Coast Trail, Central Coast NORTH SEE ADJOINING MAP Trail “OCT, N. CENTRAL COAST” TO NEWPORT Alsea Bay Trail (bushwacking) Alsea River Primary Hwy Alsea Hwy Secondary Hwy/Rd 101 20 SEGMENT 16 Forest Rd (major) SEE DETAIL MAP: Beachside Wakonda Beach Forest Rd (minor) ALSEA BAY TO YACHATS Campground Airport Featured Route Tillicum Beach Campground TO CORVALLIS Alternate Route SAN MARINE STATE PARK YACHATS ENLARGE Cape Perpetua Trailhead Highest point on the Oregon coast – EL 803’ Giant Spruce SEGMENT 17 CAPE PERPETUA Cape Perpetua Parking SEE DETAIL MAP: MARINE RESERVE Campground YACHATS TO ROCK CREEK Searose Beach Restrooms Stonefield Beach Vault Toilet Rocky Creek Campground Hobbit Beach Picnic Area ENLARGE Picnic Shelter SEGMENT 18 WASHBURNE STATE PARK Washburne SP Campground ENLARGE SEE DETAIL MAP: Heceta Head ROCK CREEK TO Lighthouse Lighthouse SUTTON CREEK Sea Lion Caves Historic Landmark Alder Dune Baker Beach Campground TO EUGENE Vista / Viewpoint Sutton Campground 126 Heceta Beach Marina Darlingtonia SEGMENT 19 State Natural Site Boat Ramp SEE DETAIL MAP: SUTTON CREEK TO PACIFIC OCEAN South Jetty FLORENCE Sand Dunes Beaches GOOSE PASTURE Florence S. Jetty Municipal Airport Campground Rd OREGON DUNES NATIONAL HONEYMAN STATE PARK Backcountry Campsite RECREATION AREA Woahink Lake Beach open to OHV travel between South Jetty Rd RV Campsite SEGMENT 20 and Siltcoos Beach from October 1 – April 30 Siltcoos Lake SEE DETAIL MAP: GOOSE PASTURE TO Siltcoos Beach Tyee Campground Showers TAHKENITCH CREEK Waxmyrtle Lagoon Campground Campground RV Waste Dump Driftwood II Campground Cabin Tahkenitch Lake Lower Smith River Rd Tahkenitch Tahkenitch Landing SEGMENT 21 Campground Campground Old Growth SEE DETAIL MAP: TAHKENITCH CREEK TO State Park UMPQUA RIVER Smith River OREGON DUNES NRA Special Destination Windy Cove County Umpqua River Campground REEDSPORT Airport SEGMENT 22 Umpqua River Umpqua River Hwy SEE DETAIL MAP: Lighthouse Convenience / UMPQUA RIVER TO 38 Ziokouski Beach Grocery Store CLEAR LAKE Clear Lake UMPQUA LIGHTHOUSE Umpqua Lighthouse TO I-5 / COTTAGE GROVE Beach STATE PARK SP Campground Eel Creek Campground TUGMAN STATE PARK Marine Reserve W.M. Tugman SP SEGMENT 23 Spinreel OHV Campground Campground Distance Marker Tenmile Lake SEE DETAIL MAP: Riley Ranch 101 CLEAR LAKE TO Campground Peak BEALE LAKE Tenmile Lake County Campground One Mile Grid SEE ADJOINING MAP Beale Lake TO COOS BAY “OCT, S. CENTRAL COAST” ENLARGE.
Recommended publications
  • Water-Resources of Western Douglas County, Oregon
    WATER-RESOURCES OF WESTERN DOUGLAS COUNTY, OREGON By D.A. Curtiss, C. A. Collins, and E.A. Oster U. S. GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS REPORT 83-4017 Prepared in cooperation with DOUGLAS COUNTY PORTLAND,OREGON 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary GEOLOGICAL SURVEY Dallas Peck, Director For additional information write to: U.S. Geological Survey 847 N.E. 19th Ave., Suite 300 Portland, Oregon 97232 i i CONTENTS Page Abstract 1 Introduction 2 Previous Investigations 2 Geographic features 2 Geolog ic setti ng 8 Tertiary marine sedimentary rocks 8 Quaternary sediments 8 Coastal deposits 9 Fluvial deposits 10 Ground-water resources 10 Recharge 11 Movement 11 Di scharge 12 Water-level fluctuations 13 Potential well yields 13 Water quality 16 General characteristics 16 Area I variations 17 Surface water 20 Mean annual flow 20 Peak flows 20 Low flows 23 Water quality 25 Umpqua River near Elkton 25 Small streams 25 Extent of saltwater intrusion in the Umpqua River estuary 27 Selected lakes 30 Summary of water-resources conditions 36 SeIected references 38 Supp I ementa I data 43 ILLUSTRATIONS [Plate is in pocket] Plate 1. Map of generalized geologic map of western Douglas County, Oregon, showing wells and springs, and stiff diagrams for water sampled for chemical ana Iysi s Page Figure 1. Index map of study area 3 2. Map showing the average annual precipitation in the study area 4 3. Graph showing maximum, average, and minimum precipitation at Reedsport, 1938-79 5 4. Graph showing cumulative departure from average annual precipitation at Astoria, Gardiner, and Reedsport 6 5.
    [Show full text]
  • Siltcoos Lake Nonpoint Source Implementation Grant: Water Quality Conditions and Nutrient Sources
    Portland State University PDXScholar Center for Lakes and Reservoirs Publications and Presentations Center for Lakes and Reservoirs 3-2010 Siltcoos Lake Nonpoint Source Implementation Grant: Water Quality Conditions and Nutrient Sources Mark D. Sytsma Portland State University, [email protected] Rich Miller Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/centerforlakes_pub Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Water Resource Management Commons Let us know how access to this document benefits ou.y Citation Details Sytsma, Mark D. and Miller, Rich, "Siltcoos Lake Nonpoint Source Implementation Grant: Water Quality Conditions and Nutrient Sources" (2010). Center for Lakes and Reservoirs Publications and Presentations. 52. https://pdxscholar.library.pdx.edu/centerforlakes_pub/52 This Report is brought to you for free and open access. It has been accepted for inclusion in Center for Lakes and Reservoirs Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. PORTLAND STATE UNIVERSITY, CENTER FOR LAKES AND RESERVOIRS Siltcoos Lake Nonpoint Source Implementation Grant Water quality conditions and nutrient sources Mark Sytsma and Rich Miller, Portland State University, Center for Lakes and Reservoirs 3/18/2010 Final report to the Oregon Department of Environmental Quality for project number W08714 Siltcoos Lake
    [Show full text]
  • Volume II Appendix F
    Volume II –Appendix F - Fisheries Appendix F – Fisheries Table of Contents 1. FISHERIES...................................................................................................... 1 2. FACTORS THAT INFLUENCE FISHERIES ................................................... 1 2.A. Water Quality..................................................................................................................................... 2 2.B. Water Quantity and Physical Habitat.............................................................................................. 2 3. ENHANCEMENT PROGRAMS....................................................................... 3 4. ASSESSMENT OF FISH RESOURCES............................................................ 4 5. BASIN OVERVIEW......................................................................................... 5 6. SUB-BASIN DISCUSSION ............................................................................... 6 6.A. Coastal / Umpqua River Sub-basins................................................................................................. 7 6.A.1. Minimum Flows ................................................................................................................................. 7 6.A.2. Distribution and Abundance............................................................................................................... 7 6.A.3. Recreation........................................................................................................................................
    [Show full text]
  • NOAA Technical Memorandum NMFS-NWFSC-118. Scientific
    NOAA Technical Memorandum NMFS-NWFSC-118 Scientific Conclusions of the Status Review for Oregon Coast Coho Salmon (Oncorhynchus kisutch) June 2012 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northwest Fisheries Science Center NOAA Technical Memorandum NMFS-NWFSC Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS-NWFSC series to issue scientific and technical publications. Manuscripts have been peer reviewed and edited. Documents published in this series may be cited in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS- F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be referenced as follows: Stout, H.A., P.W. Lawson, D.L. Bottom, T.D. Cooney, M.J. Ford, C.E. Jordan, R.G. Kope, L.M. Kruzic, G.R. Pess, G.H. Reeves, M.D. Scheuerell, T.C. Wainwright, R.S. Waples, E. Ward, L.A. Weitkamp, J.G. Williams, and T.H. Williams. 2012. Scientific conclusions of the status review for Oregon coast coho salmon (Oncorhynchus kisutch). U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-118, 242 p. NOAA Technical Memorandum NMFS-NWFSC-118 Scientific Conclusions of the Status Review for Oregon Coast Coho Salmon (Oncorhynchus kisutch) Heather A.
    [Show full text]
  • Cascadia Subduction Zone) Tsunami Inundation Map Tsunami Inundation Maps for Gardiner, W
    STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES Tsunami Inundation Map Doug-03 www.OregonGeology.org Local Source (Cascadia Subduction Zone) Tsunami Inundation Map Tsunami Inundation Maps for Gardiner, W. Lawrence Givens, Governing Board Chair Douglas County, Oregon Vicki S. McConnell, Director and State Geologist Andree V. Pollock, Assistant Director, Geologic Survey and Services Gardiner, Oregon Plate 1 Rachel L. Smith, Project Operations Manager Ian P. Madin, Chief Scientist 2013 124°12'0"W 124°10'0"W 124°8'0"W 124°6'0"W 100 200 rm 200 100 25 A Introduction y 100 r D r I L E R he I V E M C 200 F The Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon. DOGAMI has also incorporated physical evidence that suggests rm has been identifying and mapping the tsunami inundation hazard along that portions of the coast may drop 4 to 10 feet during the earthquake; s A Bas 100 the Oregon coast since 1994. In Oregon, DOGAMI manages the National this effect is known as subsidence. Detailed information on fault 25 Tsunami Hazard Mitigation Program, which has been administered by geometries, subsidence, computer models, and the methodology used to the National Oceanic and Atmospheric Administration (NOAA) since create the tsunami scenarios presented on this map can be found in Tahkenitch 1995. DOGAMI’s work is designed to help cities, counties, and other sites DOGAMI Special Papers 41 (Priest and others, 2009) and 43 (Witter and Lake 200 25 25 in coastal areas reduce the potential for disastrous tsunami-related others, 2011).
    [Show full text]
  • LANE COUNTY OREGON MULTI-JURISDICTION HAZARD MITIGATION PLAN Page | 46
    3. RISK ASSESSMENT 44 CFR Requirement §201.6(c) (2) [The plan shall include] A risk assessment that provides the factual basis for activities proposed in the strategy to reduce losses from identified hazards. Local risk assessments must provide sufficient information to enable the jurisdiction to identify and prioritize appropriate mitigation actions to reduce losses from identified hazards The purpose of risk assessment is to identify and describe hazards that affect Lane County and analyze potential losses for human life and material assets. Through better understanding of potential hazards and the degree of risk they pose, more successful mitigation strategies can be developed and implemented. This risk assessment follows the four-step process described in the FEMA publication 386-2, Understanding Your Risks: Identifying Hazards and Estimating Losses, listed as follows: Step 1: Identify Hazards Step 2: Profile Hazard Events Step 3: Inventory Assets Step 4: Estimate Losses This section is organized into three subsections that address the four steps of the risk assessment process. 3.1 Identifying Hazards. This subsection addresses Step 1 and lists the hazards considered during the planning process and those ultimately profiled in the plan. It also describes methods, definitions and data sources used for the hazard identification and profile process. 3.2 Hazard Profile. This subsection addresses Step 2 and presents a detailed outline for each identified hazard. Each hazard profile is addressed as a plan subsection and includes a general description, affected geographic area, and discussion of previous occurrences, probability of future occurrence, magnitude and severity and an assessment of overall vulnerability to each hazard.
    [Show full text]
  • Final Coastal Lakes Aquatic Plant Survey Report
    Portland State University PDXScholar Center for Lakes and Reservoirs Publications and Presentations Center for Lakes and Reservoirs 1-1-2013 Final Coastal Lakes Aquatic Plant Survey Report Mary Pfauth Portland State University Mark Sytsma Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/centerforlakes_pub Part of the Fresh Water Studies Commons Let us know how access to this document benefits ou.y Citation Details Pfauth, Mary and Sytsma, Mark, "Final Coastal Lakes Aquatic Plant Survey Report" (2013). Center for Lakes and Reservoirs Publications and Presentations. 22. https://pdxscholar.library.pdx.edu/centerforlakes_pub/22 This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Center for Lakes and Reservoirs Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Final Coastal Lakes Aquatic Plant Survey Report Prepared for: USDA Forest Service Prepared by Mary Pfauth and Mark Sytsma Center for Lakes and Reservoirs Portland State University Portland, OR 97207-0751 www.clr.pdx.edu March, 2005 v. 03.09.05 Coastal Lakes Aquatic Plant Survey Report Contents Section 1.01 Introduction ..............................................................................1 Section 1.02 Methods ...................................................................................2 Section 1.03 Results .....................................................................................5
    [Show full text]
  • Central Coast 43
    CENTRAL COAST 43 44 45 18 To Salem 46 idal estuaries, long sandy beaches, and active sand dunes accented by a few 48 47 49 rocky outcroppings and coastal islands comprise the heart of the Coast. In- Lincoln City T 101 land the Siuslaw National Forest’s 630,000 acres, in the Coast Range, have four 52 major rivers flowing through on their way to the Pacific Ocean. Explore Lincoln 50 51 City’s seven miles of beach and two large estuaries, scope the roiling waters of Siletz Bay 53 55 Boiler Bay for pelagic birds, or ascend Cape Foulweather for expansive ocean 54 views. At Newport’s Yaquina Head Outstanding Natural Area, feel the frenzy of 56 one of the largest Common Murre nesting colonies on the coast. Drive the scenic 57 r 58 Yaquina Bay Road in winter to see all six species of grebes occurring in Oregon in Siletz Rive one location. Continue south to Seal Rock for Pigeon Guillemot and Harlequin 59 Depoe Bay Cape Foulweather Duck floating on the waves and Western Gull lining the coastal islands, and to 60 229 the south jetty of the Siuslaw River in Florence to glimpse flocks of Semipalmat- 61 ed Plover and Least and Western Sandpiper on migration. 62 Yaquina Head Lighthouse 63 Newport 20 43. Knight Park 44. Salmon River Estuary Yaquina Bay Lighthouse From Hwy 101 in Lincoln City, drive From Hwy 101 in Lincoln City, drive 68-74 64 To ledo 66 N, cross the Salmon River Bridge and N 0.4 mi past the Hwy 18 overpass, 65 67 turn W (L) on Three Rocks Rd, drive cross the Salmon River Bridge, and r Yaq ve To Corvallis 2.4 mi, turn L into Knight Park.
    [Show full text]
  • On Reconciling Lake Classification with the Evolution of Four Oligotrophic Lakes in Oregon
    AN ABSTRACT OF THE THESIS OF DOUGLAS WILLIAM LARSON for the DOCTOR OF PHILOSOPHY (Name) (Degree) inFISHERIES presented on 7)_ (Major) (Date)1 Title: ON RECONCILING LAKE CLASSIFICATION WITH THE EVOLU- TION OF FOUR OLIOT Abstract approved: Redacted for privacy A John R. Donaldson Limnological data were collected from studies of four Oregon lakes that are classified as oligotrophic--Crater, Odell, Waldo, and Woahink.Phytoplankton primary production was estimated periodi- cally using a standard carbon-14 in situ method. Bioassay experi- ments were conducted to determine whether water samples, treated with various kinds and concentrations of inorganic nutrients, might stimulate carbon uptake by phytoplankton.Chlorophyll a measure- ments complemented production estimates made with carbon-14. In comparing the lakes, differences were noted concerning lake origin, watershed features, basin morphometry, surface elevation, optical and thermal properties, and water chemistry. More notable, however, was the significant difference in phytoplankton primary production and biomass among the four lakes.During July and August, 1969, productivity averaged 253. 1 (Crater), 1533. 2 (Odell), 35.5 (Waldo), and 301. 1 (Woahink)mgC/m2dar.For the same period, concentrations of chlorophyll a averaged 34. 4 (Crater), 99. 03 (Odell), 4. 7 (Waldo), and 24. 7 (Woahink)mg/rn2.This resulted from the dif- ferent uses each lake received.It is suggested that, on the basis of productivity, lakes are unique environments and are evolving at dif- ferent rates in response to natural and artificial (cultural use) enrich- ment. The need for an adaptable classification system that would take into account the continuous process of lake evolution was emphasized.
    [Show full text]
  • Coastal Lakes Strategic Action Plan for Coho Salmon Recovery
    The Coastal Lakes Strategic Action Plan for Coho Salmon Recovery FIP Draft Copy June 28 2018 Note: This SAP is still under development, and is near final draft version at the time of the FIP application deadline. Coastal Lakes Strategic Action Plan for Coho Recovery Page 0 Contents Contributors and Acknowledgements ............................................................................................ 3 Acronyms ........................................................................................................................................ 5 Executive Summary ......................................................................................................................... 6 1. Introduction: Why Coho? ........................................................................................................ 9 1.1 A Keystone Species ......................................................................................................... 10 1.2 An Indicator Watershed Function .................................................................................. 11 1.3 A Threatened Species ..................................................................................................... 12 1.4 A Unique Opportunity for Recovery .............................................................................. 12 1.5 A Locally Led Partnership ............................................................................................... 12 1. An Overview of the Siuslaw Coho Partnership and the Coastal Lakes Plan ........................
    [Show full text]
  • Chemical Control of Elodea Densa Planch. and Other Submersed Aquatic Plants As Influenced by Several Environmental Factors
    AN ABSTRACT OF THE THESIS OF JOHN WILLIAM MACKENZIE for the DOCTOR OF PHILOSOPHY (Name) (Degree) in FARM CROPS presented on 5-j/q70 (Major) (Date-) Title: CHEMICAL CONTROL OF ELODEA DENSA PLANCH. AND OTHER SUBMERSED AQUATIC PLANTS AS INFLUENCED BY SEVERAL ENVIRONMENTAL FACTORS Abstract approved: Redacted for Privacy W. R. Furtick Elodea densa Planch. was exposed to diquat (6, 7 dihydrodipyri- [do1,2-a:2',11-c]pyrazinediium dibromide), alone and in combina- tion with disodium endothall (disodium salt of 7-oxabicyclo[2.2.1] heptane-2, 3-dicarboxyclic acid), and copper sulfate pentahydrate. Studies were conducted in coastal lakes of Oregon infested with E. densa.Dichlobenil (2, 6 dichlorobenzonitrile) was applied following diquat treatments in an attempt to extend length of the control period. Plant samples were collected from trials in Siltcoos Lake for diquat analysis.Laboratory studies were conducted to determine the effects of water temperature, exposure time, light quality, and time of appli- cation on the activity of diquat and diquat combinations against E. densa.Weights of stem, length of stem, and visual control evalua- tions were used to measure effectiveness of herbicide application. In field trials, effective seasonal control of E. densa was achieved by application of 0.25 ppmw diquat.Addition of 0.25 ppmw endothall or 0.5 ppmw copper sulfate pentahydrate did not enhance the activity of the 0.25 ppmw rate of diquat.The optimum elodea control from 1.0 ppmw diquat did not prevent extensive regrowth the following season.Dichlobenil at 10 and 20 pounds active per acre suppressed but did not completely prevent regrowth in previously diquat-treated plots.Levels of diquat in treated plants were not increased by addi- tion of endothall or copper sulfate.The influence of water movement in Siltcoos Lake from wind and flood water resulted in drift of chemi- cal from treated areas and consequent control of exposed E.
    [Show full text]
  • Protecting the Oregon Coast
    : Protecting the Oregon Coast March 19, 2014 Joelle Gore, Acting Chief Coastal Programs Division (N/ORM3) Office of Ocean and Coastal Resource Management National Ocean Service National Oceanic and Atmospheric Administration 1305 East-West Highway Silver Spring, MD 20910 Sent Via Email: [email protected] Re: EPA/NOAA Proposed Disapproval of Oregon’s Coastal Nonpoint Pollution Control Program under CZARA Dear Ms. Gore, is an Oregon nonprofit corporation that works to protect and restore coastal natural resources, and help coastal residents maintain livable communities, on the entire Oregon coast from Astoria to Brookings. We write this letter to support EPA and NOAA in their proposed disapproval of Oregon’s Coastal Nonpoint Pollution Control Program (CNPCP). Oregon does not have an approvable program that meets agency requirements for a coastal nonpoint pollution program. The State has gotten by for years with an ineffective piecemeal approach, including promises to tighten TMDL’s, increase the size of riparian buffers under Department of Forestry rules for logging on private lands, decommission and/or restore so-called legacy roads in forestlands, and craft a voluntary approach to onsite septic leakage. All of these things are necessary, but none are remotely sufficient to solve the problems facing coastal communities. will concentrate specifically on the “public and private drinking water” designated use, because of its obvious importance to coastal communities. Oregon’s Failure to Create a Nonpoint Pollution Program for the Coastal Region Oregon has so far refused to create, use, enforce and maintain a nonpoint program that protects the designated uses. Currently, EPA/NOAA provide no management measures to protect drinking water from the effects of logging – yet this is the central issue facing coastal communities.
    [Show full text]