Central Coast 43
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Captive Orcas
Captive Orcas ‘Dying to Entertain You’ The Full Story A report for Whale and Dolphin Conservation Society (WDCS) Chippenham, UK Produced by Vanessa Williams Contents Introduction Section 1 The showbiz orca Section 2 Life in the wild FINgerprinting techniques. Community living. Social behaviour. Intelligence. Communication. Orca studies in other parts of the world. Fact file. Latest news on northern/southern residents. Section 3 The world orca trade Capture sites and methods. Legislation. Holding areas [USA/Canada /Iceland/Japan]. Effects of capture upon remaining animals. Potential future capture sites. Transport from the wild. Transport from tank to tank. “Orca laundering”. Breeding loan. Special deals. Section 4 Life in the tank Standards and regulations for captive display [USA/Canada/UK/Japan]. Conditions in captivity: Pool size. Pool design and water quality. Feeding. Acoustics and ambient noise. Social composition and companionship. Solitary confinement. Health of captive orcas: Survival rates and longevity. Causes of death. Stress. Aggressive behaviour towards other orcas. Aggression towards trainers. Section 5 Marine park myths Education. Conservation. Captive breeding. Research. Section 6 The display industry makes a killing Marketing the image. Lobbying. Dubious bedfellows. Drive fisheries. Over-capturing. Section 7 The times they are a-changing The future of marine parks. Changing climate of public opinion. Ethics. Alternatives to display. Whale watching. Cetacean-free facilities. Future of current captives. Release programmes. Section 8 Conclusions and recommendations Appendix: Location of current captives, and details of wild-caught orcas References The information contained in this report is believed to be correct at the time of last publication: 30th April 2001. Some information is inevitably date-sensitive: please notify the author with any comments or updated information. -
Dear Teacher: During the What About Whales
Dear Teacher: During the What About Whales assembly program one of our education staff members will introduce students to several whale and dolphin species found in Pacific waters. Using a PowerPoint presentation, life-sized inflatable whales, bones, teeth and baleen, students will learn characteristics of marine mammals and understand the differences between toothed and baleen whales. Before your assembly program: Ask students to list the characteristics of mammals and give examples. Compare the living conditions of a marine mammal with those of a terrestrial mammal. Where do they sleep? How do they get their food? What do they eat? What environmental conditions must they be adapted to? Compare and contrast humans and whales in the Where Do Whales Fit In? activity. Conduct the Measuring Whales activity. Using a tape measure, have your students measure out the length of each animal. After your assembly program: Conduct the Where Do Whales Fit In? activity again to see if students’ thing of additional classification characteristics. Conduct the The Wonder of Blubber activity to discuss one of many whale adaptations for life in the ocean. Lead a classroom discussion using the enclosed Dilemmas card activity. Review the difference between endangered and threatened species with your class. Several species of whales (sei, fin, sperm, blue, humpback and right) are currently listed as endangered in the state of Oregon. Ask students to consider what actions they can take to prevent further loss of these species. Participating in this program and using the pre and post curriculum will help your students meet Oregon science standards and Ocean Literacy Principles. -
Coarse Woody Debris in Streams of the Drift Creek Basin, Oregon by Curt N. Veldhuisen a THESIS Oregon State University in Partia
Coarse Woody Debris in Streams of the Drift Creek Basin, Oregon by Curt N. Veldhuisen A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed February 20, 1990 Commencement June 1990 AN ABSTRACT OF THE THESIS OF Curt N. Veldhuisenfor the degree of Master of Science in Forest Engineeringpresented on February 27, 1990. Title: Coarse Woody Debris in Streams of the Drift Creek Basin. Oregon Abstract Approved: Robert L. Beschta This study examined the occurrence ofcoarse woody debris (i.e., pieces greater than 0.15m in diameter and 2.0 m in length) in first- through fifth-order streams located within the Drift Creek Basin of the Oregon Coast Range. Nine "tributary reachest were surveyed to determine how three land management treatments (undisturbed, patch clearcut with buffer strip, and entirely clearcut) and/or geomorphologywere associated with CWD loadings or piece characteristics. An additional 45 km of third- to fifth-order channelswere surveyed to identify CWD distribution patternsover changing stream size. All surveys recorded channel characteristics and the dimensions and attributes ofeach CWD piece. Coarse woody debris loadings varied greatly (11 to 62 pieces/lOOm, 0.3 to 4.3 m3/100m2 of inchannelvolume) between the tributary reaches, but were not significantly (p > 0.10) related to harvest treatment. However, reaches associated with clearcut treatment containedless hardwood CWD and pieces were significantly shorter, and more decayed than in the other treatments. This suggested that little CWD recruitment had occurred in the 15 to 20 years since harvest. The undisturbed and buffer strip tributaries contained CWD that reflected continued recruitment of both hardwood and conifer trees. -
Ecosystem Use by Indigenous People in an Oregon Coastal Landscape
3220 Donald B. Zobel, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331- 2902 e-mail: [email protected] Ecosystem Use by Indigenous People in an Oregon Coastal Landscape Abstract Data regarding probable uses of biological materials by the indigenous people of the Salmon River-Cascade Head area of the Oregon coast were used to estimate the peoples use of various ecosystems near villages. Of 308 uses identified, 256 were attributable to a given species; 124 species were identified. All local ecosystems were important sources of organisms for the people, with no apparent concentration of highly used species in any particular ecosystem. One species was cultivated, one domesticated, and five acquired by trade. Four major plant resources, camas, yew, hazel, and beargrass, are not known from the Cascade Head landscape, but may have been available from elsewhere in village territory. House construction without use of cedar planks, as indicated by ethnographic records, may have resulted from the paucity of western redcedar in the Salmon River lowlands. The scarcity of several widely used taxa near coastal village sites, especially western redcedar, may have limited the wealth of this indigenous population, even on the resource-rich Oregon coast. Introduction Tillamook, who resided near Cascade Head on the north-central Oregon Coast, in an area where Indigenous people used resources primarily from information about historic and modern plant and the landscape in which they resided. The natural animal species distribution is unusually complete. distribution of resources governed the pattern and The list of taxa used was compared to historic richness of their lives. -
Timing of In-Water Work to Protect Fish and Wildlife Resources
OREGON GUIDELINES FOR TIMING OF IN-WATER WORK TO PROTECT FISH AND WILDLIFE RESOURCES June, 2008 Purpose of Guidelines - The Oregon Department of Fish and Wildlife, (ODFW), “The guidelines are to assist under its authority to manage Oregon’s fish and wildlife resources has updated the following guidelines for timing of in-water work. The guidelines are to assist the the public in minimizing public in minimizing potential impacts to important fish, wildlife and habitat potential impacts...”. resources. Developing the Guidelines - The guidelines are based on ODFW district fish “The guidelines are based biologists’ recommendations. Primary considerations were given to important fish species including anadromous and other game fish and threatened, endangered, or on ODFW district fish sensitive species (coded list of species included in the guidelines). Time periods were biologists’ established to avoid the vulnerable life stages of these fish including migration, recommendations”. spawning and rearing. The preferred work period applies to the listed streams, unlisted upstream tributaries, and associated reservoirs and lakes. Using the Guidelines - These guidelines provide the public a way of planning in-water “These guidelines provide work during periods of time that would have the least impact on important fish, wildlife, and habitat resources. ODFW will use the guidelines as a basis for the public a way of planning commenting on planning and regulatory processes. There are some circumstances where in-water work during it may be appropriate to perform in-water work outside of the preferred work period periods of time that would indicated in the guidelines. ODFW, on a project by project basis, may consider variations in climate, location, and category of work that would allow more specific have the least impact on in-water work timing recommendations. -
Yachats River Basin Fish Management Plan
( YACHATS RIVER BASIN FISH MANAGEMENT PLAN Oregon Department of Fish and Wildlife November 1997 l TABLE OF CONTENTS Introduction . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 3 Overview.............................................................................................. 5 Habitat................................................................................................ 9 Fall Chinook Salmon............................................................................ 27 Chum Salmon....................................................................................... 31 Coho Salmon........................................................................................ 33 Winter Steelhead .................... .............. ....... ......... ............ ............. ... .. .. 42 Cutthroat Trout.................................................................................... 4 7 Pacific Lamprey........................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 51 Crayfish................................................................................................ 53 Angler Access ... ... .. .. ... .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. 56 Priorities............................................................................................... 58 Implementation and Review.................................................................. 64 References........................................................................................... -
O R E G O N North Pacific Ocean
412 ¢ U.S. Coast Pilot 7, Chapter 9 31 MAY 2020 Chart Coverage in Coast Pilot 7—Chapter 9 124° 123° NOAA’s Online Interactive Chart Catalog has complete chart coverage 18520 C O L http://www.charts.noaa.gov/InteractiveCatalog/nrnc.shtml U M B I A 126° 125° 18521 R Astoria I V E R 46° Seaside Tillamook Head NEHALEM RIVER 18556 Vancouver 18558 TILLAMOOK BAY Portland Cape Lookout Cascade Head 45° SILETZ RIVER YAQUINA RIVER ALSEA RIVER 18581 18561 NORTH PA CIFIC OCEAN OREGON Heceta Head 44° 18583 SIUSLAW RIVER 18584 UMPQUA RIVER 18587 Coos Bay Cape Arago 18588 COQUILLE RIVER 43° 18589 Cape Blanco 18600 18580 Port Orford ROUGE RIVER 18601 CHETCO RIVER 42° 18602 CALIFORNIA 31 MAY 2020 U.S. Coast Pilot 7, Chapter 9 ¢ 413 Chetco River to Columbia River, Oregon (1) This chapter describes 200 miles of the Oregon coast rare clear skies; it is more likely in early winter. Winter from the mouth of the Chetco River to the mouth of the and spring winds are moderately strong, particularly south Columbia River. Also described are the Chetco and Rogue of Newport. From North Bend southward, winds reach 17 Rivers, Port Orford, Coquille River, Coos Bay, Umpqua knots or more about 5 to 15 percent of the time and 28 and Siuslaw Rivers, Yaquina Bay and River, Nehalem knots or more about 1 to 3 percent of the time. Extreme River and Tillamook Bay. The cities of Coos Bay and wind speeds usually occur in either winter or early spring North Bend on Coos Bay and Newport on Yaquina Bay and have climbed to around 50 knots. -
DOGAMI Open-File Report O-16-06
Metallic and Industrial Mineral Resource Potential of Southern and Eastern Oregon: Report to the Oregon Legislature APPENDIX B: RELEVANT PUBLISHED MINERAL INVENTORIES AND STUDIES PREVIOUSLY COMPLETED BY DOGAMI This list includes relevant published DOGAMI mineral inventories and studies. It is not a complete publication list. For all DOGAMI publications, visit the DOGAMI Publications Center, Links here will take readers to PDF or .zip formatted files or to web pages. Bulletins B-003 1938 The geology of part of the Wallowa Moun- B-016 1940 Field identification of minerals for Oregon tains, by C. P. Ross. prospectors and collectors, by Ray C. B-004 1938 Quicksilver in Oregon, by C. N. Schuette. Treasher. B-005 1938 Geological report on part of the Clarno Ba- B-017 1942 Manganese in Oregon, by F. W. Libbey, John sin, Wheeler and Wasco Counties, Oregon, Eliot Allen, Ray C. Treasher, and H. K. Lancas- by Donald K. Mackay. ter. B-006 1938 Preliminary report of some of the refractory B-019 1939 Dredging of farmland in Oregon, by F. W. Lib- clays of western Oregon, by Hewitt Wilson bey. and Ray C. Treasher. B-020 1940 Analyses and other properties of Oregon B-007 1938 The gem minerals of Oregon, by Dr. H. C. coals as related to their utilization, by H.F. Dake. Yancey and M. R. Geer. B-008 1938 An investigation of the feasibility of a steel B-023 1942 An investigation of the reported occurrence plant in the Lower Columbia River area near of tin at Juniper Ridge, Oregon, by H. -
OR Wild -Backmatter V2
208 OREGON WILD Afterword JIM CALLAHAN One final paragraph of advice: do not burn yourselves out. Be as I am — a reluctant enthusiast.... a part-time crusader, a half-hearted fanatic. Save the other half of your- selves and your lives for pleasure and adventure. It is not enough to fight for the land; it is even more important to enjoy it. While you can. While it is still here. So get out there and hunt and fish and mess around with your friends, ramble out yonder and explore the forests, climb the mountains, bag the peaks, run the rivers, breathe deep of that yet sweet and lucid air, sit quietly for awhile and contemplate the precious still- ness, the lovely mysterious and awesome space. Enjoy yourselves, keep your brain in your head and your head firmly attached to the body, the body active and alive and I promise you this much: I promise you this one sweet victory over our enemies, over those desk-bound men with their hearts in a safe-deposit box and their eyes hypnotized by desk calculators. I promise you this: you will outlive the bastards. —Edward Abbey1 Edward Abbey. Ed, take it from another Ed, not only can wilderness lovers outlive wilderness opponents, we can also defeat them. The only thing necessary for the triumph of evil is for good men (sic) UNIVERSITY, SHREVEPORT UNIVERSITY, to do nothing. MES SMITH NOEL COLLECTION, NOEL SMITH MES NOEL COLLECTION, MEMORIAL LIBRARY, LOUISIANA STATE LOUISIANA LIBRARY, MEMORIAL —Edmund Burke2 JA Edmund Burke. 1 Van matre, Steve and Bill Weiler. -
New to Newport Guide
New to Newport Guide Welcome! We’re happy to have you join the Hatfield student community! To help you settle in and answer some burning questions, we’ve prepared a brief explainer on the slightly-quirky town of Newport and the people that live here. By HSO grad students Updated 9/2020 Yaquina Head Lighthouse (Image courtesy of Hillary Thalmann) Table of Contents Getting Settled In at HMSC ................................................................................................................... 3 Grad School in the time of COVID-19 ................................................................................................. 6 Hatfield Student Organization ........................................................................................................... 6 Guin Library Resources ......................................................................................................................... 7 Racial Justice Resources at HMSC ...................................................................................................... 9 HMSC Green Team, Recycling, and Fresh Food Options ............................................................ 10 Commuting from Newport ................................................................................................................. 13 Housing .................................................................................................................................................... 14 Healthcare on the Coast ..................................................................................................................... -
Water-Resources of Western Douglas County, Oregon
WATER-RESOURCES OF WESTERN DOUGLAS COUNTY, OREGON By D.A. Curtiss, C. A. Collins, and E.A. Oster U. S. GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS REPORT 83-4017 Prepared in cooperation with DOUGLAS COUNTY PORTLAND,OREGON 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary GEOLOGICAL SURVEY Dallas Peck, Director For additional information write to: U.S. Geological Survey 847 N.E. 19th Ave., Suite 300 Portland, Oregon 97232 i i CONTENTS Page Abstract 1 Introduction 2 Previous Investigations 2 Geographic features 2 Geolog ic setti ng 8 Tertiary marine sedimentary rocks 8 Quaternary sediments 8 Coastal deposits 9 Fluvial deposits 10 Ground-water resources 10 Recharge 11 Movement 11 Di scharge 12 Water-level fluctuations 13 Potential well yields 13 Water quality 16 General characteristics 16 Area I variations 17 Surface water 20 Mean annual flow 20 Peak flows 20 Low flows 23 Water quality 25 Umpqua River near Elkton 25 Small streams 25 Extent of saltwater intrusion in the Umpqua River estuary 27 Selected lakes 30 Summary of water-resources conditions 36 SeIected references 38 Supp I ementa I data 43 ILLUSTRATIONS [Plate is in pocket] Plate 1. Map of generalized geologic map of western Douglas County, Oregon, showing wells and springs, and stiff diagrams for water sampled for chemical ana Iysi s Page Figure 1. Index map of study area 3 2. Map showing the average annual precipitation in the study area 4 3. Graph showing maximum, average, and minimum precipitation at Reedsport, 1938-79 5 4. Graph showing cumulative departure from average annual precipitation at Astoria, Gardiner, and Reedsport 6 5. -
Watershed-Scale Vegetation Patterns in a Late-Successional Forest Landscape in the Oregon Coast Range
AN ABSTRACT OF THE DISSERTATION OF Michael C. Wimberly for the degree of Doctor of Philosophy in Forest Science presented on May 14, 1999. Title: Watershed-Scale Vegetation Patterns in a Late-Successional Forest Landscape in the Oregon Coast Range. Signature redactedfor privacy. Abstract approved: Thomas A. Spies Knowledge about vegetation patterns and ecological processes in unmanaged, late- successional watersheds is needed to provide a foundation for forest management strategies aimed at conserving native biodiversity. I examined influences of environmental variability and disturbance history on forest structure and composition in the Cummins Creek Wilderness, located on the central Oregon coast. Climatic and topographic variables explained the majority of hilislope community composition, while fire history explained most of the variability in hilislope forest structure. Forest structure and composition in riparianareas was related to a climatic gradient as well as position in the stream network. The abundance of two fire-sensitive species, Tsuga heterophylla (western hemlock) and Picea sitchensis (Sitka spruce), decreased with distance from old-growth patches, possibly reflectinga seed dispersal gradient that occurred following fires 80 to 140 yearsago. I developed predictive maps of understory conifer patterns using remote sensing, aerial photographs, digital elevation models and streammaps. I predicted P. sitchensis regeneration based on distance from the coast and topography, and T heterophylla regeneration based on crown size,