Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range (Neskowin, Nestucca Bay, Hebo, and Dolph 7.5 Minute Quadrangles)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioenergy Harvest, Climate Change, and Forest Carbon in the Oregon Coast Range
Portland State University PDXScholar Environmental Science and Management Faculty Publications and Presentations Environmental Science and Management 3-2016 Bioenergy Harvest, Climate Change, and Forest Carbon in the Oregon Coast Range Megan K. Creutzburg Portland State University, [email protected] Robert M. Scheller Portland State University, [email protected] Melissa S. Lucash Portland State University, [email protected] Louisa B. Evers Bureau of Land Management Stephen D. LeDuc United States Environmental Protection Agency See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_fac Part of the Forest Biology Commons Let us know how access to this document benefits ou.y Citation Details Creutzburg, M. K., Scheller, R. M., Lucash, M. S., Evers, L. B., LeDuc, S. D., & Johnson, M. G. (2015). Bioenergy harvest, climate change, and forest carbon in the Oregon Coast Range. GCB Bioenergy. This Article is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Megan K. Creutzburg, Robert M. Scheller, Melissa S. Lucash, Louisa B. Evers, Stephen D. LeDuc, and Mark G. Johnson This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/esm_fac/118 GCB Bioenergy (2016) 8, 357–370, doi: 10.1111/gcbb.12255 Bioenergy harvest, climate change, and forest carbon in the Oregon Coast Range MEGAN K. CREUTZBURG1 , ROBERT M. SCHELLER1 , MELISSA S. LUCASH1 , LOUISA B. EVERS2 , STEPHEN D. LEDUC3 and MARK G. -
The Oregon Coast Range- Considerations for Ecological Restoration Joe Means Tom Spies Shu-Huei Chen Jane Kertis Pete Teensma
Forests of the Oregon Coast Range- Considerations for Ecological Restoration Joe Means Tom Spies Shu-huei Chen Jane Kertis Pete Teensma The Oregon Coast Range supports some of the most dense Ocean, so they are warm and often highly productive, com- and productive forests in North America. In the pre-harvest- pared to the Cascade Range and central Oregon forests. ing period these forests arose as a result of large fires-the Isaac's (1949) site index map shows much more site class I largest covering 330,000 ha (Teensma and others 1991). and I1 land in the Coast Range than in the Cascades. In the These fires occurred mostly at intervals of 150 to 300 years. summers, humid maritime air creates a moisture gradient The natural disturbance regime supported a diverse fauna from the coastal western hemlock-Sitka spruce (Tsuga and large populations of anadromous salmonids (salmon heterophylla-Piceasitchensis) zone with periodic fog extend- and related fish). In contrast, the present disturbance re- ing 4 to 10 km inland, through Douglas-fir (Pseudotsuga gime is dominated by patch clearcuts of about 10-30 ha menziesii var. rnenziesii)-western hemlock forests in the superimposed on most of the forest land with agriculture on central zone to the drier interior-valley foothill zone of the flats near rivers. Ages of most managed forests are less Douglas-fir, bigleaf maple (Acer rnacrophyllum)and Oregon than 60 years. This logging has coincided with significant oak (Quercus garryana). declines in suitable habitat and populations of some fish and wildlife species. Some of these species have been nearly extirpated. -
Ecosystem Use by Indigenous People in an Oregon Coastal Landscape
3220 Donald B. Zobel, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331- 2902 e-mail: [email protected] Ecosystem Use by Indigenous People in an Oregon Coastal Landscape Abstract Data regarding probable uses of biological materials by the indigenous people of the Salmon River-Cascade Head area of the Oregon coast were used to estimate the peoples use of various ecosystems near villages. Of 308 uses identified, 256 were attributable to a given species; 124 species were identified. All local ecosystems were important sources of organisms for the people, with no apparent concentration of highly used species in any particular ecosystem. One species was cultivated, one domesticated, and five acquired by trade. Four major plant resources, camas, yew, hazel, and beargrass, are not known from the Cascade Head landscape, but may have been available from elsewhere in village territory. House construction without use of cedar planks, as indicated by ethnographic records, may have resulted from the paucity of western redcedar in the Salmon River lowlands. The scarcity of several widely used taxa near coastal village sites, especially western redcedar, may have limited the wealth of this indigenous population, even on the resource-rich Oregon coast. Introduction Tillamook, who resided near Cascade Head on the north-central Oregon Coast, in an area where Indigenous people used resources primarily from information about historic and modern plant and the landscape in which they resided. The natural animal species distribution is unusually complete. distribution of resources governed the pattern and The list of taxa used was compared to historic richness of their lives. -
Protecting O&C Lands: Mount Hebo
A fact sheet from Sept 2013 Bob Van Dyk Bob Van Dyk Bob Van Dyk Protecting O&C Lands Mount Hebo Location: Northern Oregon Coast Range Rising 3,175 feet from its densely forested surroundings, Mount Hebo is one of the highest peaks 11,310 Acres: in the northern Oregon Coast Range. The prominent Ecological value: Historical significance, lookout is a popular day hike for those willing to breathtaking vistas, hemlock and Douglas fir climb far above the massive hemlock and Douglas fir forests, and abundant wildflowers forest to fully experience the breathtaking scope of the Northwest’s landscape. Along the path, a traveler Economic value: Hiking and biking will find an abundance of towering trees and rare wildflowers. North of the mountain’s summit lies the last remaining roadless area in northwest Oregon, What are the O&C lands? providing a unique wild land experience in this part In 1866, Congress established a land-grant program for the Oregon of the state. This area should be forever protected & California (O&C) Railroad Co. to spur the completion of the as wilderness. rail line between Portland and San Francisco that required the company to sell the deeded land to settlers. Forty years later, when Pioneers dubbed the peak “Heave Ho” because of the the company failed to meet the terms of the agreement fully, the way it seemed to erupt from the surrounding forest. federal government reclaimed more than 2 million acres of mostly Over the years, the name “Heave Ho” morphed into forested land. Today, those O&C lands remain undeveloped and “Hebo.” These explorers discovered what Native are administered by the Bureau of Land Management and the U.S. -
Mill Creek Watershed Assessment
Yamhill Basin Council Mill Watershed Assessment December 30, 1999 Funding for the Mill Assessment was provided by the Oregon Watershed Enhancement Board and Resource Assistance for Rural Environments. Mill Assessment Project Manager: Robert J. Bower, Principal Author Co-authors: Chris Lupoli, Linfield College intern, for Riparian section and assisted with Wetlands Conditions section. Tamara Quandt, Linfield College intern, for Sensitive Species section. Editors: Melissa Leoni, Yamhill Basin Council, McMinnville, OR Alison Bower, Forest Ecologist, Corvallis, OR Contributors: Bill Ferber, Salem, Water Resources Department (WRD) Chester Novak, Salem, Bureau Land Management (BLM) Dan Upton, Dallas, Willamette Industries David Anderson, Monmouth, Boise Cascade Dean Anderson, Dallas, Polk County Geographical Information Systems (GIS) Dennis Ades, Salem, Department of Environmental Quality (DEQ) Gary Galovich, Corvallis, Oregon Department Fish and Wildlife (ODFW) Mark Koski, Salem, Bureau of Land Management (BLM) Patrick Hawe, Salem, Bureau of Land Management (BLM) Rob Tracey, McMinnville, Natural Resource and Conservation Service (NRCS) Stan Christensen, McMinnville, Yamhill Soil Water Conservation District Susan Maleki, Corvallis, Oregon Watershed Enhancement Board (OWEB) Warren Tausch, Tillamook Bureau of Land Management (BLM) Special Thanks: ! John Cruickshank, Gooseneck Creek resident for his assistance with the Historical, and Channel Modification sections and in the gathering of historical photographs. ! Gooseneck Creek Watershed Group for their support and guidance. ! John Caputo, Yamhill County GIS. ! BLM and Polk County GIS for providing some of the GIS base layers used to create the maps in this assessment. ! USDA Service Center, Natural Resource Conservation Service, McMinnville, for copying and office support. ! Polk and Yamhill Soil and Water Conservation Districts. ! Nick Varnum, PNG Environmental Inc., Tigard, for assisting with the Hydrology and Channel Habitat Typing sections. -
I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM of SHEMYA and ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University O
Paleomagnetism Of Shemya And Adak Islands, Aleutian Islands, Alaska Item Type Thesis Authors Cameron, Christopher Paul Download date 23/09/2021 14:56:00 Link to Item http://hdl.handle.net/11122/9194 I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University of Alaska, Ph.D., 1970 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan tutc nTCCTDTATTOM MAC HTTM MTPROFIT.MFD F.VAPTT.Y AS RF.OF.TVF.D Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALE01IAGNETISM OF SHEMYA AMD ADAK ISLAUDS, ALEUTIAN ISLANDS, ALASKA A DISSERTATION Presented to the Faculty of the University of Alaska in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Christopher P/" Cameron B. S. College, Alaska May, 1970 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALEOilAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA APPROVED: f t l ‘y l .V" ■i. n ■ ■< < ; N w 1 T *W -C ltc-JL It / _ _ ____ /vx... , ~ ~ 7 YdSV Chairman APPPvOVED: dai£ 3 / 3 0 / 7 0 Dean of the College of Earth Sciences and Mineral Industry Vice President for Research and Advanced Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Shemya and Adak Islands, Aleutian Islands, Alaska. The specimens were collected and measured using standard paleomagnetic methods. Alternating field demagnetization techniques were applied to test the stability of the remanence and to remove unwanted secondary components of magnetization. -
O R E G O N North Pacific Ocean
412 ¢ U.S. Coast Pilot 7, Chapter 9 31 MAY 2020 Chart Coverage in Coast Pilot 7—Chapter 9 124° 123° NOAA’s Online Interactive Chart Catalog has complete chart coverage 18520 C O L http://www.charts.noaa.gov/InteractiveCatalog/nrnc.shtml U M B I A 126° 125° 18521 R Astoria I V E R 46° Seaside Tillamook Head NEHALEM RIVER 18556 Vancouver 18558 TILLAMOOK BAY Portland Cape Lookout Cascade Head 45° SILETZ RIVER YAQUINA RIVER ALSEA RIVER 18581 18561 NORTH PA CIFIC OCEAN OREGON Heceta Head 44° 18583 SIUSLAW RIVER 18584 UMPQUA RIVER 18587 Coos Bay Cape Arago 18588 COQUILLE RIVER 43° 18589 Cape Blanco 18600 18580 Port Orford ROUGE RIVER 18601 CHETCO RIVER 42° 18602 CALIFORNIA 31 MAY 2020 U.S. Coast Pilot 7, Chapter 9 ¢ 413 Chetco River to Columbia River, Oregon (1) This chapter describes 200 miles of the Oregon coast rare clear skies; it is more likely in early winter. Winter from the mouth of the Chetco River to the mouth of the and spring winds are moderately strong, particularly south Columbia River. Also described are the Chetco and Rogue of Newport. From North Bend southward, winds reach 17 Rivers, Port Orford, Coquille River, Coos Bay, Umpqua knots or more about 5 to 15 percent of the time and 28 and Siuslaw Rivers, Yaquina Bay and River, Nehalem knots or more about 1 to 3 percent of the time. Extreme River and Tillamook Bay. The cities of Coos Bay and wind speeds usually occur in either winter or early spring North Bend on Coos Bay and Newport on Yaquina Bay and have climbed to around 50 knots. -
"Preserve Analysis : Saddle Mountain"
PRESERVE ANALYSIS: SADDLE MOUNTAIN Pre pare d by PAUL B. ALABACK ROB ERT E. FRENKE L OREGON NATURAL AREA PRESERVES ADVISORY COMMITTEE to the STATE LAND BOARD Salem. Oregon October, 1978 NATURAL AREA PRESERVES ADVISORY COMMITTEE to the STATE LAND BOARD Robert Straub Nonna Paul us Governor Clay Myers Secretary of State State Treasurer Members Robert Frenkel (Chairman), Corvallis Bill Burley (Vice Chainnan), Siletz Charles Collins, Roseburg Bruce Nolf, Bend Patricia Harris, Eugene Jean L. Siddall, Lake Oswego Ex-Officio Members Bob Maben Wi 11 i am S. Phe 1ps Department of Fish and Wildlife State Forestry Department Peter Bond J. Morris Johnson State Parks and Recreation Branch State System of Higher Education PRESERVE ANALYSIS: SADDLE MOUNTAIN prepared by Paul B. Alaback and Robert E. Frenkel Oregon Natural Area Preserves Advisory Committee to the State Land Board Salem, Oregon October, 1978 ----------- ------- iii PREFACE The purpose of this preserve analysis is to assemble and document the significant natural values of Saddle Mountain State Park to aid in deciding whether to recommend the dedication of a portion of Saddle r10untain State Park as a natural area preserve within the Oregon System of I~atural Areas. Preserve management, agency agreements, and manage ment planning are therefore not a function of this document. Because of the outstanding assemblage of wildflowers, many of which are rare, Saddle r·1ountain has long been a mecca for· botanists. It was from Oregon's botanists that the Committee initially received its first documentation of the natural area values of Saddle Mountain. Several Committee members and others contributed to the report through survey and documentation. -
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
DOGAMI Open-File Report O-16-06, Metallic and Industrial Mineral Resource Potential of Southern and Eastern Oregon
Oregon Department of Geology and Mineral Industries Brad Avy, State Geologist OPEN-FILE REPORT O-16-06 METALLIC AND INDUSTRIAL MINERAL RESOURCE POTENTIAL OF SOUTHERN AND EASTERN OREGON: REPORT TO THE OREGON LEGISLATURE Mineral Resource Potential High Moderate Low Present Not Found Base Metals Bentonite Chromite Diatomite Limestone Lithium Nickel Perlite Platinum Group Precious Metals Pumice Silica Sunstones Uranium Zeolite G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 Ian P. Madin1, Robert A. Houston1, Clark A. Niewendorp1, Jason D. McClaughry2, Thomas J. Wiley1, and Carlie J.M. Duda1 2016 1 Oregon Department of Geology and Mineral Industries, 800 NE Oregon St., Ste. 965 Portland, OR 97232 2 Oregon Department of Geology and Mineral Industries, Baker City Field Office, Baker County Courthouse, 1995 3rd St., Ste. 130, Baker City, OR 97814 Metallic and Industrial Mineral Resource Potential of Southern and Eastern Oregon: Report to the Oregon Legislature NOTICE This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or sur- veying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. This publication cannot substitute for site-specific investigations by qualified practitioners. Site-specific data may give results that differ from the results shown in the publication. Cover image: Maps show mineral resource potential by individual commodity. -
OR Wild -Backmatter V2
208 OREGON WILD Afterword JIM CALLAHAN One final paragraph of advice: do not burn yourselves out. Be as I am — a reluctant enthusiast.... a part-time crusader, a half-hearted fanatic. Save the other half of your- selves and your lives for pleasure and adventure. It is not enough to fight for the land; it is even more important to enjoy it. While you can. While it is still here. So get out there and hunt and fish and mess around with your friends, ramble out yonder and explore the forests, climb the mountains, bag the peaks, run the rivers, breathe deep of that yet sweet and lucid air, sit quietly for awhile and contemplate the precious still- ness, the lovely mysterious and awesome space. Enjoy yourselves, keep your brain in your head and your head firmly attached to the body, the body active and alive and I promise you this much: I promise you this one sweet victory over our enemies, over those desk-bound men with their hearts in a safe-deposit box and their eyes hypnotized by desk calculators. I promise you this: you will outlive the bastards. —Edward Abbey1 Edward Abbey. Ed, take it from another Ed, not only can wilderness lovers outlive wilderness opponents, we can also defeat them. The only thing necessary for the triumph of evil is for good men (sic) UNIVERSITY, SHREVEPORT UNIVERSITY, to do nothing. MES SMITH NOEL COLLECTION, NOEL SMITH MES NOEL COLLECTION, MEMORIAL LIBRARY, LOUISIANA STATE LOUISIANA LIBRARY, MEMORIAL —Edmund Burke2 JA Edmund Burke. 1 Van matre, Steve and Bill Weiler. -
Drainage Basin Morphology in the Central Coast Range of Oregon
AN ABSTRACT OF THE THESIS OF WENDY ADAMS NIEM for the degree of MASTER OF SCIENCE in GEOGRAPHY presented on July 21, 1976 Title: DRAINAGE BASIN MORPHOLOGY IN THE CENTRAL COAST RANGE OF OREGON Abstract approved: Redacted for privacy Dr. James F. Lahey / The four major streams of the central Coast Range of Oregon are: the westward-flowing Siletz and Yaquina Rivers and the eastward-flowing Luckiamute and Marys Rivers. These fifth- and sixth-order streams conform to the laws of drain- age composition of R. E. Horton. The drainage densities and texture ratios calculated for these streams indicate coarse to medium texture compa- rable to basins in the Carboniferous sandstones of the Appalachian Plateau in Pennsylvania. Little variation in the values of these parameters occurs between basins on igneous rook and basins on sedimentary rock. The length of overland flow ranges from approximately i mile to i mile. Two thousand eight hundred twenty-five to 6,140 square feet are necessary to support one foot of channel in the central Coast Range. Maximum elevation in the area is 4,097 feet at Marys Peak which is the highest point in the Oregon Coast Range. The average elevation of summits in the thesis area is ap- proximately 1500 feet. The calculated relief ratios for the Siletz, Yaquina, Marys, and Luckiamute Rivers are compara- ble to relief ratios of streams on the Gulf and Atlantic coastal plains and on the Appalachian Piedmont. Coast Range streams respond quickly to increased rain- fall, and runoff is rapid. The Siletz has the largest an- nual discharge and the highest sustained discharge during the dry summer months.