Identifying Design Opportunities for Deep Energy Retrofits

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Design Opportunities for Deep Energy Retrofits RetroFit Depot Identifying Design Opportunities for Deep Energy Retrofits Available for download at www.RetroFitDepot.org Introducing the Retrofit Depot: Deep Energy Retrofit Guides Several commercial building energy retrofit guides already exist, but none address deep energy retrofits. Rocky Mountain Institute wants the owners, occupants, service providers, and retrofit practitioners1 of our nation’s commercial buildings to be aware of the opportunity in deep energy retrofits. We want them to know the value. We want them to have a solid understanding of the process. We also want to arm them with design recommendations that will help make their deep energy retrofits most effective. Provides comprehensive guidance on BuIlDInG framing and quantifying the value of thE CasE Such is the aim of the RetroFit Depot website. It is an unbiased source of 1 deep energy retrofits. information about deep energy retrofits for commercial buildings. On the website people are able to gain a high level understanding of the value of deep retrofits and the required process to achieve them. For those who would like to learn more, we have created a set of three guides. Lists the key components of the manaGInG deep energy retrofit process that Since you are now reading the Guide to Managing Deep Energy Retrofits, DEEp EnERGy limit or eliminate cost premiums, you are likely motivated to realize the value of deep energy retrofits as 2 REtROfIts enable risk management, and create described on the RetroFit Depot website and the Building the Case guide. maximum value. This guide will help you understand the key action items for a deep energy retrofit. You may be the building owner, or perhaps you are the energy efficiency Provides the retrofit practitioner IDEntIfyInG with instructions for identifying or sustainability champion at your organization, or maybe you are a service DEsIGn provider preparing a pitch to your client. opportunities to reduce energy 3 OppORtunItIEs consumption by end-use. Regardless of who you are, you are ready to get started. 1We use “owners” and “occupants” to refer to those individuals making the decision to invest in deep energy savings for their building space. They include owner-investors, owner-occupants, and tenants of buildings. We use “service providers” to refer to those individuals that help business professionals retrofit their building space. These professionals include portfolio, asset, property, and facility managers, as well as other service providers such as brokers, appraisers, lawyers, and sustainability/LEED consultants. We use “retrofit practitioners” to refer to those individuals that help owners renovate and upgrade. These professionals include architects, engineers, and contractors, as well as professionals at energy service companies (ESCOs). RETROFIT DEPOT: MANAGING DEEP ENERGY RETROFITS ROCKY MOUNTAIN INSTITUTE 1 table of Contents IntRODuCInG thE DEEp EnERGy REtROfIt GuIDEs...........................1 BuIlDInG EnVElOpE...........................................................................................21 DEsIGn GuIDanCE OVERVIEW..........................................................................4 Define Needs..............................................................................................................21 Introducing Integrative Design..................................................................................5 Reduce Loads.............................................................................................................22 How to Use this Guide.................................................................................................6 Consider the Climate................................................................................................25 thE RIGht STEps In thE RIGht ORDER.......................................................7 Leverage a Planned Facility Improvement..........................................................25 lIGhtInG (DAYLIGhtInG & ElECtRIC)...........................................................8 sERVICE WATER hEATInG.................................................................................26 Define Needs.................................................................................................................8 Define Needs..............................................................................................................26 Reduce Loads through Daylighting.........................................................................10 Reduce Loads..............................................................................................................27 Design Efficient Electric Lighting.............................................................................13 Consider the Climate.................................................................................................27 Add Efficient Exterior Lighting.................................................................................14 Leverage a Planned Facility Improvement...........................................................27 Add Lighting Controls................................................................................................15 hEATInG VEntILATIOn, anD aIR COnDItIOnInG (hVaC)................28 Consider the Climate..................................................................................................17 Define Needs..............................................................................................................28 Leverage a Planned Facility Improvement...........................................................17 Reduce Loads..............................................................................................................29 PLUG/mIsCEllanEOus lOaDs anD OCCUPANT BEhaVIOR...........18 Consider the Climate.................................................................................................29 Define Needs...............................................................................................................18 Specifiy Equipment Type.........................................................................................29 Reduce Loads..............................................................................................................19 Optimize Distribution Design...................................................................................30 Add Controls...............................................................................................................,19 Recover and Reuse Waste Streams.......................................................................30 Educate the Occupants.............................................................................................20 Optimize Controls.......................................................................................................30 Consider the Climate..................................................................................................20 Bundle Measures to Optimize Synergies.............................................................31 Leverage a Planned Facility Improvement...........................................................20 Leverage a Planned Facility Improvement...........................................................31 In COnCLUSIOn......................................................................................................32 REfEREnCEs.............................................................................................................33 RETROFIT DEPOT: MANAGING DEEP ENERGY RETROFITS ROCKY MOUNTAIN INSTITUTE 2 acknowledgements R. pEtER WIlCOx anD JOhn JEnnInGs The RetroFit Depot: Deep Energy Retrofit Guides Northwest Energy Efficiency Alliance for commercial buildings were developed within maRk fRankEl the RetroFit Initiative of Rocky Mountain Institute. New Buildings Institute Rocky Mountain Institute’s valued donors made this pEtER RumsEy anD hIlaRy pRICE work possible. Integral Group DJ huBlER anD ERIn Ells Johnson Controls, Inc. The Rocky Mountain Institute project team to produce the Identifying Design Opportunities guide JIm kElsEy kW Engineering consisted of Elaine Gallagher Adams, Frank Alsup, harvey anDERsOn anD JOhn RICE Michael Bendewald, Cara Carmichael, Coreina Essentia Health Chan, Ellen Franconi, Nicole Hammer, Joshua DaVID WIllIams Hathaway, Molly Miller, Victor Olgyay, Roy Torbert, LHB, Inc. and Caroline Fluhrer Traube. The team is indebted phIl yuska to the following external reviewers: Performance Services RETROFIT DEPOT: MANAGING DEEP ENERGY RETROFITS ROCKY MOUNTAIN INSTITUTE 3 Design Guidance Overview Buildings use 42 percent of the nation’s energy—much of which is wasted through inefficient design and operation. Standard retrofit approaches that focus on replacement of individual technologies can capture a substantial portion of this efficiency potential. However, much larger savings and greater value can be achieved cost-effectively through integrative design that optimally combines such technologies2. This guide gets you started in being able to combine technologies and to truly practice integrative design. Retrofit practitioners who practice integrative design create a competitive advantage for themselves as a high- value service provider. And they will help transform our buildings from energy hogs into more comfortable, livable, and workable spaces that can help usher in an efficient and renewable energy era. 2E.g., a report of 50 recent building retrofits that save 30–80% energy cost states that
Recommended publications
  • The Path to a Deep Energy Retrofit
    M OUN KY T C A I O N R I N E THE PATH TO STIT U T A DEEP ENERGY RETROFIT USING AN ENERGY SAVINGS PERFORMANCE CONTRACT Seven key steps will help owners reach deeper energy savings through Energy Savings Performance Contracts (ESPCs). ESPCs are partnerships between a Federal agency and an energy service company (ESCO) that allow Federal agencies to complete energy-savings projects without upfront capital costs or special Congressional appropriations. What is a deep energy retrofit? Deep energy retrofits integrate a variety of energy conservation measures (ECMs) through a whole building approach to achieve superior energy savings compared to conventional retrofits, often approaching or exceeding 50% savings. They also make net-zero energy buildings more achievable by substantially reducing energy demand, which makes it easier and more cost-effective to meet remaining energy needs with renewable energy. Why do a deep energy retrofit? • To reduce GHG emissions and support the President’s Climate Deep retrofits can be Action Plan implemented across a wide spectrum of buildings and • Maximize the value of Federal appropriations conditions: • To replace aging infrastructure and improve a building system’s What is not (necessarily) reliability required for deep energy • To reduce operating costs and hedge against risks such as rising savings: high energy prices, high energy costs energy consumption or advanced energy conservation measures. • To improve occupant satisfaction, wellness, and productivity What is required for deep • To maintain access to additional cost-effective upgrades and savings: buildings in need of an infrastructure renewal in the future energy retrofit, agency support, a thorough audit process to identify measures, and an integrative Brought to you by GSA’s Office of Federal High-Performance Green Buildings design approach.
    [Show full text]
  • Paper Preparation Guidelines
    2018 Building Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA-USA Chicago, IL September 26-28, 2018 DEEP ENERGY RETROFIT VS IMPROVING BUILDING INTELLIGENCE – DANISH CASE STUDY Muhyiddine Jradi1*, Christian T. Veje1, and Bo Nørregaard Jørgensen1 1Center for Energy Informatics, The Mærsk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense M, Denmark *Email:[email protected] effective energy measures and techniques (Nielsen et al. ABSTRACT 2016). However, the current approach in the majority of This study provides a preliminary assessment of the energy renovation projects and applications is driven by trade-off between deep energy retrofit and improving the need to change and modify with the absence of a the building intelligence within an energy renovation proper decision-making strategy considering different process. A standard Danish office building from the components including building envelope and energy 1980’s is considered as a case study. A detailed energy systems integration (Friege and Chappin 2014). One of model was developed in EnergyPlus to simulate the the major energy renovation approaches which has dynamic performance of the case study building. gained vast interest in the recent years is the ‘Deep Various deep energy retrofit measures were Energy Retrofit’ (DER) (Jradi et al. 2017), which is an implemented and assessed. In addition, different overall whole-building renovation approach to attain measures to improve the energy efficiency and significant energy savings. The Massachusetts Save intelligence of the building were investigated and Energy Retrofit Builder Guide defines DER as the simulated with emphasis on European Standard EN retrofit of the building enclosure and systems resulting 15232 recommendations for control and management of into a high performance building (BSC 2013).
    [Show full text]
  • Deep Energy Retrofits for Buildings a SHARING CITIES PLAYBOOK
    Deep energy retrofits for buildings A SHARING CITIES PLAYBOOK This project has received funding from the European Union’s Horizon 2020 research and innovation 2020 V.1 programme under Grant Agreement No 691895 Click on CONTENTS the buttons to navigate Introduction How to use this through this playbook and introduction What is this playbook? 3 document Who is this guide for? 5 1 Building retrofit: Enhancing energy efficiency 6 The challenge 8 Challenge & Solution Deep energy retrofits - What is it and why is this different to a regular building retrofit? 8 2 How to navigate the challenges of conducting building retrofits- Insights from 16 Sharing Cities Insights 3 What is the value of doing a deep retrofit 19 4 How to implement a deep retrofit 23 Exploring opportunity 24 Audience engagement 29 Benefits Technical design 35 Finance and implementation 38 Monitoring and sharing 42 Implementation Toolkit References 47 Acknowledgements 48 This playbook is produced by Sharing Cities, a major international smart cities project. It addresses some of the most pressing urban challenges cities face today across ten replicable solutions. 2 WHAT IS THIS PLAYBOOK? Introduction How to use this playbook and This guide gives an overview of how Sharing Cities rolled out introduction building retrofit schemes in its three ‘lighthouse cities’ – Lisbon, London and Milan. The aim was to address challenges in each city context and share the experience so other cities can learn from it. Challenge & Solution This playbook will: TOOLS & RESOURCES Help you understand what solutions were tested in the Sharing Cities Insights lighthouse cities and what urban challenges they address.
    [Show full text]
  • Business and Technical Concepts for Deep Energy Retrofit of Public Buildings
    AT-15-009 Business and Technical Concepts for Deep Energy Retrofit of Public Buildings Alexander Zhivov, PhD Ruediger Lohse John Shonder Cyrus Nasseri Member ASHRAE Member ASHRAE Member ASHRAE Member ASHRAE Heimo Staller Ove Moerck, PhD Marko Nokkala ABSTRACT energy retrofit projects. Nevertheless, in many countries the number of projects funded by ESPCs still do not form a signif- Many governments worldwide are setting more stringent icant part of the total investment budgeted by public institu- targets for reductions in energy use in government/public tions for energy retrofits. This paper presents the concept and buildings. Buildings constructed more than 10 years ago several case studies that illustrate mechanisms that will account for a major share of energy used by the building stock. increase the acceptance of deep energy retrofit (DER) and However, the funding and “know-how” (applied knowledge) broaden acceptance of its implementation using ESPCs for a available for owner-directed energy retrofit projects has not comprehensive refurbishment of existing buildings. kept pace with new requirements.With typical retrofit projects, reduction of energy use varies between 10% and 20%, while TECHNOLOGY BUNDLES experience from executed projects around the globe shows that energy-use reduction can exceed 50%, and renovated build- What Is Deep Energy Retrofit? ings can cost-effectively achieve the passive-house standard or even approach net zero energy status (Hermelink and Muller, Though the deep energy retrofit (DER) concept is currently 2010; NBI 2014; RICS 2013; GreenBuildingAdvisor.com used all over the world, there is no established global definition of 2013; Shonder and Nasseri 2015; Miller and Higgins 2015; this term.
    [Show full text]
  • Environmental Considerations of Building Insulation National Park Service – Pacific West Region
    Environmental Considerations of Building Insulation National Park Service – Pacific West Region Overview Insulation is a commonly used product in the building industry. The manufacture, use, and disposal of insulation is associated with a number of positive and negative environmental impacts. What follows is a brief overview of “green” insulation, vendors, and an in-depth article from Environmental Building News on the environmental comparisons of insulation materials. • The most significant environmental issue associated with insulation manufacture in recent years has been the use of chlorofluorocarbons (CFCs) as foaming agents. By 1993 virtually all CFCs had been eliminated from insulation manufacture; hydrochlorofluorocarbons (HCFCs) have been substituted in most products. These are significantly better than CFCs, but they still result in some ozone depletion, and they contribute to global warming, and are, therefore, also scheduled for phaseout over the next decade. • All insulation materials reduce pollutant and greenhouse gas emissions by reducing heating and air-conditioning requirements of a building. This benefit almost always outweighs environmental problems associated with certain materials. • Do not substitute a “green” insulation material for a non-green material if doing so will result in lower overall energy performance. Even though the environmental impacts of the insulation material might be lower for the green product, the overall environmental impact of the building would likely be greater by lower insulating values. • Fiber insulation materials (cellulose, fiberglass, mineral wool, cotton) generally have lower environmental impacts associated with their manufacture than foam plastic insulation materials, although they usually do not offer as high per- inch R-values. When insulation thickness is not unduly restricted, specify fiber insulation.
    [Show full text]
  • Technical Performance Overview of Bio-Based Insulation Materials Compared to Expanded Polystyrene
    buildings Article Technical Performance Overview of Bio-Based Insulation Materials Compared to Expanded Polystyrene Cassandra Lafond and Pierre Blanchet * Department of Wood and Forest Sciences, Laval University, Québec, QC G1V0A6, Canada; [email protected] * Correspondence: [email protected] Received: 5 February 2020; Accepted: 22 April 2020; Published: 26 April 2020 Abstract: The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.
    [Show full text]
  • Proven Performance of Seven Cold Climate Deep Retrofit Homes R
    Proven Performance of Seven Cold Climate Deep Retrofit Homes R. Osser, K. Neuhauser, and K. Ueno Building Science Corporation June 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste Proven Performance of Seven Cold Climate Deep Retrofit Homes Prepared for: Building America Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S.
    [Show full text]
  • Study of Thermal Properties of Lightweight Insulation Made of Flax Straw
    Slovak Journal of Civil Engineering Vol. 26, 2018, No. 2, 9 – 14 DOI: 10.2478/sjce-2018-0008 STUDY OF THERMAL PROPERTIES OF LIGHTWEIGHT INSULATION MADE OF FLAX STRAW Maryna BABENKO1*, Adriana ESTOKOVA2, Mykola SAVYTSKYI1, Stanislav UNČÍK3 Abstract Address The article presents the results of a study of the properties of flax 1 “Prydniprovska State Academy of Civil Engineering and straw as a raw material and as a lightweight, environmental- Architecture” State Higher Education Establishment, Ukraine, ly-friendly insulation made of a two-component mixture of flax Department of Reinforced Concrete and Stone Constructions straw and liquid glass. The flax is considered to be renewable 2 Technical University of Kosice, Slovak Republic and Department and is a 100% natural waste product of the agriculture industry, of Material Engineering/Institute of Environmental Engineering, which may be widely used as sustainable building insulation af- Faculty of Civil Engineering ter light modifications. The ratio mixes of the two-component 3 Slovak University of Technology in Bratislava, Bratislava, Slovak eco-insulation of flax straw and liquid glass (Na2O(SiO2)) have Republic, Department of Material Engineering, Faculty of Civil been developed in terms of sustainability principles such as en- Engineering vironmental friendliness and energy efficiency. We used thermal * Corresponding author: [email protected] analysis to compare flax straw as a raw material, and a complex insulation made of flax straw demonstrated a slower decompo- sition of the composite and shorter peaks, which supports the Key words concept of the transformation of flax straw with liquid glass to in- ● Flax, straw, crease its fire resistance properties.
    [Show full text]
  • Energy Efficiency: Building Insulation Volume I – Theory & Materials
    PDHonline Course E446 (3 PDH) Energy Efficiency: Building Insulation Volume I – Theory & Materials Instructor: Lee Layton, P.E 2018 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E446 www.PDHonline.org Energy Efficiency: Building Insulation Volume I – Theory & Materials Lee Layton, P.E Table of Contents Section Page Introduction ……………………………………….. 3 Chapter 1, How Insulation Works .………….…..... 5 Chapter 2, Types of Insulation …………………..... 9 Chapter 3, Moisture Migration …………………… 27 Chapter 4, Environmental & Regulatory Issues ….. 30 Summary …………………………………………. 33 © Lee Layton. Page 2 of 33 www.PDHcenter.com PDHonline Course E446 www.PDHonline.org Introduction The efficiency of a building envelope, which includes anything that encloses a building such as walls, ceilings, windows, foundations, is a key to improving the energy efficiency of structures. Basically, the envelope is anything that separates the inside of a building from the outside environment. A good energy efficiency program begins with having a building envelope that efficiently minimizes heat loss. Heating and cooling accounts for 50 to 70% of the energy used in an average home. Inadequate insulation and air leakage are leading causes of energy waste in most residential homes. The benefits of a good building envelope include: • Saves money, • Makes the home more comfortable by helping to maintain a uniform temperature throughout the house, and • Makes walls, ceilings, and floors warmer in the winter and cooler in the summer. The amount of energy efficiency improvements depend on several factors: local climate; the size, shape, and construction of the house; the living habits; the type and efficiency of the heating and cooling systems; and the fuel used.
    [Show full text]
  • Facts About Moisture and Fiber Glass Metal Building Insulation
    INSULATION FACTS Facts About # Moisture and Fiber Glass 26 Metal Building Insulation Information from NAIMA nlike many other insula- What effect does mois- tion products, fiber glass Q ture have on insulation metal building insulation performance? is often visible to the Uoccupants of the building. Making Moisture from rain, ground sure that roofs and walls do not A water,humidity or other leak, that the product is clean and forms of condensation creates the dry prior to installation, and that potential for several problems in condensation is controlled after metal buildings. First, the pres- installation is critical to the insula- ence of water (or ice) in the insu- tion performance and to the lation seriously degrades the building’s interior aesthetics. thermal performance and can Because of performance require- degrade the effective service life ments, fiber glass metal building of the insulation system. Second, insulations are most frequently water in contact with metals can installed with a facing material contribute to corrosion and laminated to the surfaces that may degrade the service life of the be visible.This facing serves building.Third, collection of several purposes: water can lead to dripping, stain- ing, and other undesirable effects I Provides vapor retarder such as mold, mildew and odors, protection to retard passage of which degrade the building’s water vapor through the insu- intended service. lation to cold surfaces where condensation can occur I Protects the insulation from damage Should wet insulation I Provides light reflectivity Q be replaced? I Provides an aesthetic appearance Yes. When fiber glass metal Fiber glass metal building insu- A building insulation is lation will provide long service exposed to storm waters or flood life and optimum performance damage, the wet insulation should when a few simple precautions be removed and replaced since are followed.
    [Show full text]
  • Deep Energy Retrofits
    A Practical Look atDeep-Energy Retrofits BY MARTIN HOLLADAY Cutting a home’s energy use by f you pay any attention to 50% to 90% is a worthy goal, but the building science, you have extreme costs keep it out of reach probably seen the term “deep-energy retrofit”— for many. We take a look at the Ia phrase being thrown around most cost-effective alternatives. with the colloquiality of “sus- tainability” and “green.” Like the word “green,” the term “deep-energy retrofit” is poorly defined and somewhat ambig- uous. In most cases, though, “deep-energy retrofit” is used to describe remodeling projects designed to reduce a house’s energy use by 50% to 90%. Remodelers have been per- forming deep-energy retrofits— originally called “superinsulation retrofits”—since the 1980s (see “retrofit Superinsulation,” FHB #20 and online at Fine Homebuilding.com). Most deep- energy retrofit projects are pre- dominantly focused on reducing heating and cooling loads, not on the upgrade of appliances, light- ing, or finish materials. While a deep-energy retrofit yields a home that is more com- fortable and healthful to live in, the cost of such renovation work can be astronomical, making this type of retrofit work impossible for many people in this country. Those of us who can’t afford a deep-energy retrofit can still An old house with a new shell. This deep-energy retrofit in Somer- ville, Mass., received 4 in. of spray polyurethane foam on its exte- study the deep-energy approach, rior. (For more information, see the case study on p.
    [Show full text]
  • Deep Energy Retrofits Market in the Greater Boston Area
    DEEP ENERGY RETROFITS MARKET IN THE GREATER BOSTON AREA Commissioned by the Netherlands Enterprise Agency Final Report DEEP ENERGY RETROFITS MARKET IN THE GREATER BOSTON AREA Submitted: 13 October 2020 Prepared for: The Netherlands Innovation Network This report was commissioned by the Netherlands Enterprise Agency RVO. InnovationQuarter served as an advisor on the project. Contents I. Introduction ................................................................................................................................ 3 II. Overview of Policy Drivers ........................................................................................................... 5 III. Economic Opportunity Assessment .............................................................................................. 9 IV. Market Snapshot ....................................................................................................................... 11 V. Actor Profiles ............................................................................................................................. 24 VI. Appendix ................................................................................................................................... 33 2 I. Introduction Cadmus is supporting the Netherlands Innovation Network (NIN) by providing an overview of the deep energy retrofit market in the Greater Boston Area. This report is intended to help Dutch companies in identify strategic opportunities to enter or expand their business opportunities in the Greater
    [Show full text]