Redalyc.Soundscape of a Management and Exploitation Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Universidad Austral De Chile Facultad De Ciencias Escuela De Biología Marina
Universidad Austral de Chile Facultad de Ciencias Escuela de Biología Marina Profesor Patrocinante: Dr. Dirk Schories. Instituto de Ciencias Marinas y Limnológicas. Facultad de Ciencias – Universidad Austral de Chile. Profesor Co-patrocinante: Dr. Luis M. Pardo. Instituto de Ciencias Marinas y Limnológicas. Facultad de Ciencias – Universidad Austral de Chile. ECOLOGÍA TRÓFICA DEL ASTEROIDEO Cosmasterias lurida (Phillipi, 1858) EN EL SENO DEL RELONCAVÍ (SUR DE CHILE): DISTRIBUCIÓN, ABUNDANCIA, ALIMENTACIÓN Y MOVIMIENTO. Tesis de Grado presentada como parte de los requisitos para optar al grado de Licenciado en Biología Marina y Título Profesional de Biólogo Marino. IGNACIO ANDRÉS GARRIDO IRIONDO VALDIVIA - CHILE 2012. AGRADECIMIENTOS Primero que todo, me siento extremadamente afortunado gracias a tanta gente maravillosa que en estos 25 años se ha cruzado por mi camino. Quiero agradecer especialmente a todos los que aportaron de alguna forma en mi formación como Biólogo Marino: A mi núcleo familiar, Margarita I., Dagoberto G. y Augusto G. (también Gorlak y Ulises) que con sus consejos y apoyo incondicional logre cumplir este sueño que tanto anhelaba. Gracias por todo el cariño y por creer en mí, esto se los dedico a ustedes. Al Dr. Dirk Schories, amigo y profesor, quien me enseño a disfrutar y valorar lo que más admiro en la vida, la naturaleza y el infinito mundo submarino. Asimismo, quien me guió en mi formación como Biólogo Marino y con quien compartí incontables inmersiones fascinantes e inolvidables. Además fue quien financio esta tesis de pregrado. Espero podamos continuar trabajando en el futuro. ¡Muchas gracias por todo! Al Dr. Luis M. Pardo, quien con el tiempo se convirtió en un importante guía profesional y amigo. -
Acoustic Tagging of Large Sharks – Potential for Acoustic Interference
CITIZEN SCIENCE – CS 05-11-17) Acoustic tagging of large sharks – Potential for acoustic interference (CS 05-11-17) – Kim Allen independent researcher Citizen science overview This paper is one of a series of unfunded, independent research initiatives that question mainstream science, Animal ethics approaches and Governments’ apparent acceptance of “Validated” science in the area of wildlife electronic tracking. Clearly, the Australian shark issue is extremely contentious as well as political and emotionally charged. Over $100 million has been expended by State and Federal governments in an attempt to find answers and make our beaches safer. Unfortunately, at no stage has a strategic approach been taken to identify the key disciplines of science that need to be considered, assessed, and applied. Significant investment has been directed into the construction and support of wide-scale acoustic receiver arrays and individual sensors as well as significant tagging of large sharks off our coastline for research and public safety. Previous satellite archival tagging programs conducted by CSIRO gave us good insight into shark movements, however since this time despite significant investment minimal progress appears to have been made and the potential risks appear to have been ignored. This CSIRO document clearly outlines the types of tags that are used for shark research, it also clearly defines the recommended protocols that should be used for shark tagging operations. From photographic details shared in the public domain it is clear that shark tagging operations undertaken by Fisheries departments don’t follow these stringent protocols. (www.cmar.csiro.au/e-print/open/2009/bradfordrw a.pdf ) It is extremely difficult for “Unqualified” Citizen scientists to challenge mainstream research particularly given the potential erosion of future funding sources if technical criticism is determined as valid. -
Federal Register/Vol. 86, No. 75/Wednesday, April 21, 2021
21082 Federal Register / Vol. 86, No. 75 / Wednesday, April 21, 2021 / Rules and Regulations DEPARTMENT OF COMMERCE FOR FURTHER INFORMATION CONTACT: Lisa Network, and the Wishtoyo Foundation Manning, NMFS, Office of Protected filed a complaint seeking court-ordered National Oceanic and Atmospheric Resources, 301–427–8466. deadlines for the issuance of proposed Administration SUPPLEMENTARY INFORMATION: and final rules to designate critical habitat for the CAM, MX, and WNP 50 CFR Parts 223, 224, and 226 Background DPSs of humpback whales. See Center Under the ESA, we are responsible for for Biological Diversity et al. v. National [Docket No. 210415–0080] determining whether certain species are Marine Fisheries Service, et al., No. threatened or endangered, and, to the 3:18–cv–01628–EDL (N.D. Cal.). The RIN 0648–BI06 maximum extent prudent and parties entered into a settlement determinable, designating critical agreement with the approval and Endangered and Threatened Wildlife habitat for endangered and threatened oversight of the court, and subsequently and Plants: Designating Critical species at the time of listing (16 U.S.C. amended the dates specified in the Habitat for the Central America, 1533(a)(3)(A)(i)). On September 8, 2016, original order. The amended settlement Mexico, and Western North Pacific we published a final rule that revised agreement stipulated that NMFS submit Distinct Population Segments of the listing of humpback whales under a proposed determination concerning Humpback Whales the ESA by removing the original, the designation of critical habitat for taxonomic-level species listing, and in these three DPSs to the Federal Register AGENCY: National Marine Fisheries its place listing four DPSs as endangered by September 26, 2019. -
The Diet and Predator-Prey Relationships of the Sea Star Pycnopodia Helianthoides (Brandt) from a Central California Kelp Forest
THE DIET AND PREDATOR-PREY RELATIONSHIPS OF THE SEA STAR PYCNOPODIA HELIANTHOIDES (BRANDT) FROM A CENTRAL CALIFORNIA KELP FOREST A Thesis Presented to The Faculty of Moss Landing Marine Laboratories San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Timothy John Herrlinger December 1983 TABLE OF CONTENTS Acknowledgments iv Abstract vi List of Tables viii List of Figures ix INTRODUCTION 1 MATERIALS AND METHODS Site Description 4 Diet 5 Prey Densities and Defensive Responses 8 Prey-Size Selection 9 Prey Handling Times 9 Prey Adhesion 9 Tethering of Calliostoma ligatum 10 Microhabitat Distribution of Prey 12 OBSERVATIONS AND RESULTS Diet 14 Prey Densities 16 Prey Defensive Responses 17 Prey-Size Selection 18 Prey Handling Times 18 Prey Adhesion 19 Tethering of Calliostoma ligatum 19 Microhabitat Distribution of Prey 20 DISCUSSION Diet 21 Prey Densities 24 Prey Defensive Responses 25 Prey-Size Selection 27 Prey Handling Times 27 Prey Adhesion 28 Tethering of Calliostoma ligatum and Prey Refugia 29 Microhabitat Distribution of Prey 32 Chemoreception vs. a Chemotactile Response 36 Foraging Strategy 38 LITERATURE CITED 41 TABLES 48 FIGURES 56 iii ACKNOWLEDGMENTS My span at Moss Landing Marine Laboratories has been a wonderful experience. So many people have contributed in one way or another to the outcome. My diving buddies perse- vered through a lot and I cherish our camaraderie: Todd Anderson, Joel Thompson, Allan Fukuyama, Val Breda, John Heine, Mike Denega, Bruce Welden, Becky Herrlinger, Al Solonsky, Ellen Faurot, Gilbert Van Dykhuizen, Ralph Larson, Guy Hoelzer, Mickey Singer, and Jerry Kashiwada. Kevin Lohman and Richard Reaves spent many hours repairing com puter programs for me. -
0251 AES Behavior & Ecology, 552 AB, Friday 9 July 2010 Jeff
0251 AES Behavior & Ecology, 552 AB, Friday 9 July 2010 Jeff Kneebone1, Gregory Skomal2, John Chisholm2 1University of Massachusetts Dartmouth; School for Marine Science and Technology, New Bedford, Massachusetts, United States, 2Massachusetts Division of Marine Fisheries, New Bedford, Massachusetts, United States Spatial and Temporal Habitat Use and Movement Patterns of Neonatal and Juvenile Sand Tiger Sharks, Carcharias taurus, in a Massachusetts Estuary In recent years, an increasing number of neonate and juvenile sand tiger sharks (Carcharias taurus) have been incidentally taken by fishermen in Plymouth, Kingston, Duxbury (PKD) Bay, a 10,200 acre tidal estuary located on the south shore of Massachusetts. There are indications that the strong seasonal presence (late spring to early fall) of sand tigers in this area is a relatively new phenomenon as local fishermen claim that they had never seen this species in large numbers until recently. We utilized passive acoustic telemetry to monitor seasonal residency, habitat use, site fidelity, and fine scale movements of 35 sand tigers (79 – 120 cm fork length; age 0 - 1) in PKD Bay. Sharks were tracked within PKD Bay for periods of 5 – 88 days during September – October, 2008 and June – October, 2009. All movement data are currently being analyzed to quantify spatial and temporal habitat use, however, preliminary analyses suggest that sharks display a high degree of site fidelity to several areas of PKD Bay. Outside PKD Bay, we documented broader regional movements throughout New England. Collectively, these data demonstrate the that both PKD Bay and New England coastal waters serve as nursery and essential fish habitat (EFH) for neonatal and juvenile sand tiger sharks. -
AJ3 – M Fournet, Karpowership Marine Acoustic Ecology Expert Input
"AJ3" JUDICIAL REVIEW – ENVIRONMENTAL AUTHORISATION FOR THREE PROPOSED GAS TO POWER POWERSHIP PROJECTS LED BY KARPOWERSHIP SA (PTY) LTD – MARINE ACOUSTIC ECOLOGY EXPERT INPUT Michelle Fournet, M.S., PhD OVERVIEW: This report contains an expert opinion assessing the scientific soundness of activities relating to three Gas to Power - Powership Projects led by Karpowership SA (PTY) Ltd. The proposed project locations include: (1) Port of Ngqura (on the Southeastern side of South Africa), (2) Richards Bay (near Durban), and (3) in Saldanha Bay (near Cape Town on the West Coast of South Africa). The projects involve the generation of electricity by means of mobile Powerships to be berthed in the marine environment. Additional components of the projects include Floating Storage Regasification Units (FSRU), gas pipelines, and a Liquid Natural GasCarrier (LNGC), which will all interact with marine ecosystems. Specifically, this report is concerned with whether the marine ecology assessments and noise impact assessments (hereafter ‘the studies’) and the associated environmental impact assessment reports (EIAs) adequately assessed the environmental impact of anthropogenic noise and vibrations associated with the proposed projects and associated activities. Noise and vibrations will be broadly addressed, with specific emphasis on suitability of the EIAs to address impacts to the marine environment. These projects collectively rely on a single technical study to predict possible noise levels emanating from the powership, repeat language and mitigation strategies, and rely on the same scientific and technical references. As such, this report will address the three independent EIAs and the associated studies collectively, noting differences in the ecology of the three regions as needed, since site specific assessments of marine noise impacts were omitted from all three EIAs and associated studies. -
Autotomy of Rays of Heliaster Helianthus (Asteroidea: Echinodermata)*
Zoosymposia 7: 173–176 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) Autotomy of rays of Heliaster helianthus (Asteroidea: Echinodermata)* JOHN M. LAWRENCE1,3 & CARLOS F. GAYMER2 1 Department of Integrative Biology, University of South Florida, Tampa, Florida, USA 2 Departamento de Biología Marina, CEAZA and IEB, Universidad Católica del Norte, Coquimbo, Chile 3 Corresponding author, E-mail: [email protected] *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract In species of the family Heliasteridae, the ossicles of the proximal parts of the sides of each ray are joined by connective tissue to those of the adjacent rays to form interradial septa. These provide support to the extensive disc. Only a relatively small part of the ray is free. Autotomy of rays occurs in Heliaster helianthus in response to predatory attack by the asteroid Meyenaster gelatinosus. Autotomy of the ray does not occur at the base of the free part of the ray (arm) but near the base of the ray. In addition to the plane of autotomy at this location, a longitudinal plane of autotomy occurs in the connec- tive tissue between the ossicles of the interradial septa. This indicates a plane of mutable collagenous tissue is present. Autotomy of the ray involves all these planes of autotomy and results in loss of most of the ray. Key words: Asteroidea, Heliasteridae, autotomy, ray loss, mutable collagenous tissue Introduction Autotomy of rays occurs near the base of the arm (the free part of the ray) in most asteroids (Emson & Wilkie 1980). -
River Listening: Acoustic Ecology
RIVER LISTENING: ACOUSTIC ECOLOGY adopts an acoustic ecology approach by exploring acoustic AND AQUATIC BIOACOUSTICS IN GLOBAL patterns from a holistic perspective that incorporates the physi- RIVER SYSTEMS cal habitat of the river ecosystem [4]. Leah Barclay, Griffith University, Brisbane, Australia. The scientific grounding for River Listening is led by fresh- Email: <[email protected]>. water ecologist Dr Simon Linke. Dr Linke’s pioneering work in biomonitoring and river conservation planning has been Toby Gifford, Griffith University, Brisbane, Australia. used by agencies and NGOs from South East Queensland to Email: <[email protected]>. the Congo and he has recently been investigating aquatic bioa- Simon Linke, Griffith University, Brisbane, Australia. coustics and real-time ecosystem monitoring in freshwater Email <[email protected]>. environments using passive acoustics. Dr Linke believes that classic techniques for measuring aquatic biodiversity are prob- See <mitpressjournals.org/toc/leon/51/3> for supplemental files associated lematic as they potentially injure the study organism (such as with this issue. electrofishing) and can be bias as they only provide a brief balance-unbalance 2015–2016, part 2 Submitted: 21 October 2016 snapshot at the time of observation. He believes that passive Abstract acoustics presents a noninvasive and unexplored approach to River Listening is an interdisciplinary research project exploring the freshwater ecosystem monitoring. This theory is shared by Dr cultural and biological diversity of global river systems through Toby Gifford, the third collaborator on River Listening who is sound. The project examines the creative possibilities of accessible a music technologist and software programmer active in a wide and noninvasive recording technologies to monitor river health and engage local communities in the conservation of global river systems. -
The Evolution of Gigantism on Temperate Seashores
bs_bs_banner Biological Journal of the Linnean Society, 2012, 106, 776–793. The evolution of gigantism on temperate seashores GEERAT J. VERMEIJ* University of California Davis, Department of Geology, One Shields Avenue, Davis, CA 95616 Received 10 January 2012; revised 22 February 2012; accepted for publication 22 February 2012bij_1897 776..793 The extent to which animal lineages achieve large body size, a trait with broad advantages in competition and defence, varies in space and time according to the supply of (and demand for) resources, as well as the magnitude and effects of extinction. Using the maximum sizes of shallow-water marine shell-bearing molluscs belonging to nineteen guilds (groups of species with similar habits and food sources) in seven temperate regions from the Early Miocene to the Recent, the present study examined the controls on productivity and predation that enable and compel large size to evolve. The North Pacific (especially its eastern sector) has been most favourable to large-bodied species from the Pliocene onward. Large productive kelps (Laminariales) evolved there in conjunction with herbivorous mammals, setting the stage through positive feedbacks between production and consumption for the evolution of large molluscan herbivores and suspension-feeders. The evolution of bottom-feeding predatory mammals together with other large predators created intense selection for large molluscan sizes. Very large molluscs in the Early Miocene were concentrated in the southern hemisphere, especially among metabolically passive species. Extinctions, which preferentially targeted the largest members of guilds in most regions, were more numerous in the southern hemisphere and the North Atlantic than in the North Pacific. -
UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza Y
UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE BIOLOGÍA Riqueza y tipos de hábitat de equinodermos en la Región Arequipa al 2017 Tesis para optar el título profesional de Biólogo presentado por el Bachiller en Ciencias Biológicas: Michael Leopoldo Espinoza Roque Asesor: Blgo. Dr. Graciano Alberto Del Carpio Tejada AREQUIPA – PERÚ 2018 1 ____________________________________ Blgo. Dr. Graciano Alberto Del Carpio Tejada ASESOR 2 DEDICATORIA A la memoria de mi padre, Leopoldo Espinoza Ramos, por todo su cariño, comprensión y sacrificio, sé que estaría feliz al verme cumplir esta meta. 3 AGRADECIMIENTOS A la Universidad Nacional de San Agustín de Arequipa (UNSA INVESTIGA), por el soporte financiero, con recursos del canon de la UNSA, para que se realice el presente proyecto de investigación (Contrato de financiamiento N° 156 – 2016 – UNSA), y un especial agradecimiento al Blgo. Luis Alberto Ponce Soto por la paciencia y apoyo en el acompañamiento y monitoreo de mi proyecto. A mi asesor de tesis, Blgo. Dr. Graciano Alberto Del Carpio Tejada, por su apoyo incondicional durante el desarrollo del presente trabajo de investigación. A la Blga. Rosaura Gonzales Juárez, por su contribución al inicio de este proyecto y sus enseñanzas y consejos que han aportado en mi formación profesional. Al Blgo. Franz Cardoso Pacheco, por permitirme consultar material de la colección científica del Laboratorio de Biología y Sistemática de Invertebrados Marinos de la Facultad de Ciencias Biológicas (LaBSIM), de la Universidad Nacional Mayor de San Marcos. A Gustavo Robles Fernández, Por permitirme consultar material del Instituto de Investigación y Desarrollo Hidrobiológico de la Universidad Nacional de San Agustín (INDEHI – UNSA). -
Scales of Detection and Escape of the Sea Urchin Tetrapygus Niger in Interactions with the Predatory Sun Star Heliaster Helianthus
Journal of Experimental Marine Biology and Ecology 407 (2011) 302–308 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Scales of detection and escape of the sea urchin Tetrapygus niger in interactions with the predatory sun star Heliaster helianthus Tatiana Manzur a,b,⁎, Sergio A. Navarrete a a Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile b Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile article info abstract Article history: Predators can simultaneously have lethal (consumption) and non-lethal (modification of traits) effects on Received 26 January 2011 their prey. Prey escape or fleeing from potential predators is a common form of a non-lethal predator effect. Received in revised form 20 June 2011 The efficiency of this response depends on the prey's ability to detect and correctly identify its predator far Accepted 26 June 2011 enough to increase the probability of successful escape, yet short enough to allow it to allocate time to other Available online 26 July 2011 activities (e.g. foraging). In this study, we characterized the non-lethal effect of the sun star Heliaster helianthus on the black sea urchin Tetrapygus niger by assessing the nature of predator detection and the Keywords: fi Detection spatial scale involved both in predator detection and in the escape response. Through eld and laboratory Escape experiments we demonstrate that T. -
Aspects of the Biology of Astrostole Scabra
ASPECTS OF THE BIOLOGY OF ASTROSTOLE SCABRA (HUTTON, 1872) -------------_.. _.. __ ._. A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Zoology, in the University of Canterbury by John C. Town University of Canterbury 1979 THESlS i \ ,~ t I ':) [ -lit- ;'. CONTENTS I L r . r'l CHAPTER Page ABSTRACT x INTRODUCTION • 1 SECTION 1 1 DISTRIBUTION AND DISPERSAL OF THE GENUS ASTROSTOLE FISHER, 1923 (ECHINODERMATA: ASTEROIDEA) 3 Introduction 3 Distribution of Astrostole • 4 Distribution of Astrostole scabra •• • • 0 5 Discussion • 9 SECTION 2 2 SOME ASPECTS OF THE POPULATION DYNAMICS OF ASTROSTOLE SCABRA • 17 Introduction • • • • 17 Materials and Methods 19 Results 22 Movement 22 Size and morphology • 30 Growth, recruitment, mortality and longevity 36 Discussion • 39 SECTION 3 3 REPRODUCTIVE PERIODICITY AND SOME FACTORS AFFECTING GONAD PRODUCTION IN ASTROSTOLE SCABRA 46 Introduction • • • • . • 46 Materials and Methods 47 ii CHAPTER Page Results 48 Annual reproductive cycle • 48 Pyloric caeca indices . 51 Gonad production 51 Sex ratio • 54 Discussion • • 54 SECTION 4 4 DIETARY COMPOSITION AND SEASONAL ASPECTS OF FEEDING ACTIVITY IN ASTROSTOLE SCABRA • 59 General Study Area • 61 Study Sites 63 Materials and Methods 64 Results 68 Feeding behaviour • 68 Overall dietary composition • 69 Comparison of diet between sites 74 Seasonal aspects of feeding behaviour and dietary compositon 79 The impact of predation on the prey community • 87 5 SELECTIVE FEEDING 91 Introduction • • • • 91 Materials and Methods 92 Results 94 6 PREY ESCAPE REACTIONS 98 Introduction . • • . • . 98 Materials and Methods 103 Results 103 iii CHAPTER Page chitons • 104 Abalone • 104 Limpets, 107 Fissurellid gastropods 107 Littorinid gastropods • 108 Trochid gastropods 109 Whelks 110 Echinoderms .