Transformation Groups, Vol. 9, No. 4, 2004, pp. 337{379 c Birkh¨auser Boston (2004) ESSENTIAL DIMENSION OF ALGEBRAIC GROUPS AND INTEGRAL REPRESENTATIONS OF WEYL GROUPS N. LEMIRE∗ Department of Mathematics University of Western Ontario London, ON N6A 5B7, Canada
[email protected] Abstract. Upper bounds on the essential dimension of algebraic groups can be found by examining related questions about the integral representation theory of lattices for their Weyl groups. We examine these questions in detail for all simple affine algebraic groups, expanding on work of Lorenz and Reichstein for PGLn. This results in upper bounds on the essential dimensions of these simple affine algebraic groups which match or improve on the previously known upper bounds. 1. Introduction The purpose of this paper is to use integral representation theory to obtain upper bounds on the essential dimension of certain linear algebraic groups. Throughout the paper, we will work over a fixed algebraically closed field k of characteristic zero. Let G be a fixed linear algebraic group over k. A G-variety X is an algebraic variety with a regular G-action. X is a generically free G-variety if G acts freely (with trivial stabilizers) on a dense open subset of X. A dominant G-equivariant rational map of generically free G-varieties X and Y is called a G-compression and is denoted by X 99K Y . Then the essential dimension of an algebraic group is ed(G) = min dim(Y=G); where Y is taken over the set of generically free G-varieties for which there exists a G-compression from a linear generically free G-variety X to Y .