Contributions to the Essential Dimension of Finite and Algebraic Groups

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to the Essential Dimension of Finite and Algebraic Groups CONTRIBUTIONS TO THE ESSENTIAL DIMENSION OF FINITE AND ALGEBRAIC GROUPS Inauguraldissertation zur Erlangung der Wurde¨ eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakult¨at der Universit¨at Basel von Roland L¨otscher aus Ruswil LU Basel, 2010 Originaldokument gespeichert auf dem Dokumentenserver der Universit¨at Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag Creative Commons Namensnennung-Keine kommerzielle Nutzung- ” Keine Bearbeitung 2.5 Schweiz“ lizenziert. Die vollst¨andige Lizenz kann unter creativecommons.org/licences/by-nc-nd/2.5/ch eingesehen werden. genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. H. Kraft Prof. Dr. Z. Reichstein Basel, den 30. M¨arz 2010 Prof. Dr. E. Parlow, Dekan ii Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz Sie dürfen: das Werk vervielfältigen, verbreiten und öffentlich zugänglich machen Zu den folgenden Bedingungen: Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt). Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden. Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden. • Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Am Einfachsten ist es, einen Link auf diese Seite einzubinden. • Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechteinhabers dazu erhalten. • Diese Lizenz lässt die Urheberpersönlichkeitsrechte unberührt. Die gesetzlichen Schranken des Urheberrechts bleiben hiervon unberührt. Die Commons Deed ist eine Zusammenfassung des Lizenzvertrags in allgemeinverständlicher Sprache: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de Haftungsausschluss: Die Commons Deed ist kein Lizenzvertrag. Sie ist lediglich ein Referenztext, der den zugrundeliegenden Lizenzvertrag übersichtlich und in allgemeinverständlicher Sprache wiedergibt. Die Deed selbst entfaltet keine juristische Wirkung und erscheint im eigentlichen Lizenzvertrag nicht. Creative Commons ist keine Rechtsanwaltsgesellschaft und leistet keine Rechtsberatung. Die Weitergabe und Verlinkung des Commons Deeds führt zu keinem Mandatsverhältnis. Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ Datum: 3.4.2009 iv Contents Overview 1 Acknowledgments 2 List of publications in peer-reviewed journals and on arxiv.org including material of this thesis 3 Chapter I. Multihomogeneous covariants and the essential dimension of algebraic groups 5 1. Preliminaries 5 2. Introduction 7 3. The multihomogenization technique 9 4. Multihomogeneous invariants 15 5. Properties of multihomogeneous covariants 19 6. Covariant dimension versus essential dimension 23 7. The central extension theorem 24 8. Subgroups and direct products 26 9. A generalization of Florence’ twisting construction 27 10. Normal elementary p-subgroups 32 Bibliography 35 Chapter II. Compressions of finite group actions and covariant dimension, II 37 1. Introduction 37 2. Multihomogeneous Covariants 38 3. Covariant dimension and essential dimension 40 4. The image of a covariant 43 5. Some examples 46 6. Faithful Groups 47 7. Groups of covariant dimension 2 48 8. Errata to [KS07] 50 Bibliography 51 Chapter III. Faithful and p-faithful representations of minimal dimension 53 1. Faithful representations and the abelian socle 53 2. A generalization of Gasch¨utz’ theorem 56 3. Minimal dimension of faithful representations 58 4. Minimal p-faithful representations of extensions of p-groupsbytori 60 Bibliography 67 Chapter IV. Essential p-dimension of algebraic tori 69 v 1. Introduction 69 2. Proof of Theorem 1.2 73 3. The p-closure of a field 74 4. The group C(G) 76 5. Proof of Theorem 1.3(a) 78 6. p-isogenies 81 7. Proof of Theorem 1.3(b) 82 8. An additivity theorem 83 9. Modules and lattices 85 10. Proof of Theorem 1.3(c) 87 11. Tori of essential dimension ≤ 1 89 12. Tori split by cyclic extensions of degree dividing p2 91 Acknowledgments 94 Bibliography 95 Curriculum Vitae 98 vi Overview Essential dimension, introduced by Joe Buhler and Zinovy Reichstein and in its most general form by Alexander Merkurjev, is a measure of complexity of algebraic structures such as quadratic forms, hermitian forms, central simple algebras, ´etale algebras etc. which are defined over fields. Informally, the essential dimension of an algebraic structure is the number of parameters needed to define its objects up to isomorphism. The objects of algebraic structures are often classified by cohomology sets H1(K,G) (with respect to the fppf topology) of an algebraic group G. The set H1(K,G) can be seen as the set of isomorphy classes of G-torsors over K. The essential dimension of G-torsors (called essential dimension of G) gives an invariant of algebraic groups, which will be of primary interest in this thesis. The text is subdivided into four chapters as follows: Chapter I+II: Multihomogenization of covariants and its application to covariant and essential dimension The essential dimension of a linear algebraic group G can be expressed via G-equivariant rational maps ϕ: A(V ) 99K A(W ), so called covariants, between generically free G- modules V and W . In these two chapters we explore a new technique for dealing with covariants, called multihomogenization. This technique was jointly introduced with Hans- peter Kraft and Gerald Schwarz in an already published paper [KLS], which forms the second chapter. Applications of the multihomogenization technique to the essential dimension of al- gebraic groups are given by results on the essential dimension of central extensions, di- rect products, subgroups and the precise relation of essential dimension and covariant dimension (which is a variant of the former with polynomial covariants). Moreover the multihomogenization technique allows one to extend a twisting construction introduced by Matthieu Florence from the case of irreducible representations to completely re- ducible representations. This relates Florence’s work on the essential dimension of cyclic p-groups to recent stack theoretic approaches by Patrick Brosnan, Angelo Vistoli and Zinovy Reichstein and Nikita Karpenko and Alexander Mekurjev. A portion of the first chapter is accepted for publication in Transformation groups [L2]. An earlier and larger version with the same title is published on Arxiv [L1]. Chapter III: Faithful and p-faithful representations of minimal dimension The study of essential dimension of finite and algebraic groups is closely related to the study of its faithful resp. generically free representations. In general the essential dimen- sion of an algebraic group is bounded above by the least dimension of a generically free representation minus the dimension of the algebraic group. In some prominent cases this upper bound or a variant of it is strict. In this chapter we are guided by the following general questions: What do faithful representations of the least possible dimension look like? How can they be constructed? How are they related to faithful representations of minimal dimension of subgroups? In particular we investigate representations of an extension G of a p-group by a torus (over an algebraically closed field). We will show that such an algebraic group G has a finite p-subgroup F such that the least dimension of a representation of G with kernel finite and of order prime to p is equal to the least dimension of a faithful representation of 1 F . This result has been established in a combined effort with Zinovy Reichstein and Mark MacDonald. Along the way we also compute the minimal number of irreducible representations needed to construct a faithful representation and therewith generalize a classical theorem of Wolfgang Gaschutz¨ (Endliche Gruppen mit treuen absolut-irreduziblen Darstel- lungen, Math. Nachr. 12 (1954), 253-255). Chapter IV: Essential p-dimension of algebraic tori This chapter is joint work with Mark MacDonald, Aurel Meyer and Zinovy Reichstein and is submitted for publication [LMMR]. We study a variant of essential dimension which is relative to a prime number p. This variant, called essential p-dimension, disregards effects resulting from other primes than p. In a recent paper Nikita Karpenko and Alexander Merkurjev have computed the essential dimension of p-groups. We extend their result and find the essential p-dimension for a class of algebraic groups, which includes all algebraic tori and twisted finite p-groups. Acknowledgments I would like to thank my adviser Hanspeter Kraft for introducing me to the subject of covariant and essential dimension and for guiding me during my thesis. He carefully read this manuscript and several preprints for publication. I wish to thank him for his tremendous support and for sharing his insights both into the mathematical and non-mathematical world. While I was away in Vancouver for one month he took over my duties as a teaching assistant. Thanks a lot! Many thanks go to Zinovy Reichstein from whom I learnt a lot about essential dimension and who agreed to referee this thesis. He greatly helped me to organize my stay in Vancouver and to reach the frontiers of the research in essential dimension. I would also like to thank the hosting math department of the University of British Columbia and to Kay Behrend, who allowed me to use his office during my stay in Vancouver. During my thesis I received financial support from a Schweizer Nationalfonds grant. My stay in Vancouver was funded by the Freie Akademische Gesellschaft (FAG) of Basel. It was a great pleasure to collaborate with Gerald Schwarz and Hanspeter Kraft and with Aurel Meyer, Mark MacDonald and Zinovy Reichstein. I found it very motivating to do mathematics together, be it at the blackboard or via email. Special thanks go to Aurel, with whom I had lots of useful discussions ever since. I enjoyed to take part in two conferences related to essential dimension, one in Lens in 2008, the other in Banff in 2009. I want to thank the organisers for inviting me and taking care of everything.
Recommended publications
  • Essential Dimension of Finite Groups
    University of California Los Angeles Essential Dimension of Finite Groups A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Wanshun Wong 2012 c Copyright by Wanshun Wong 2012 Abstract of the Dissertation Essential Dimension of Finite Groups by Wanshun Wong Doctor of Philosophy in Mathematics University of California, Los Angeles, 2012 Professor Alexander Merkurjev, Chair In this thesis we study the essential dimension of the first Galois cohomology functors of finite groups. Following the result by N. A. Karpenko and A. S. Merkurjev about the essential dimension of finite p-groups over a field containing a primitive p-th root of unity, we compute the essential dimension of finite cyclic groups and finite abelian groups over a field containing all primitive p-th roots of unity for all prime divisors p of the order of the group. For the computation of the upper bound of the essential dimension we apply the techniques about affine group schemes, and for the lower bound we make use of the tools of canonical dimension and fibered categories. We also compute the essential dimension of small groups over the field of rational numbers to illustrate the behavior of essential dimension when the base field does not contain all relevant primitive roots of unity. ii The dissertation of Wanshun Wong is approved. Amit Sahai Richard Elman Paul Balmer Alexander Merkurjev, Committee Chair University of California, Los Angeles 2012 iii Table of Contents 1 Introduction ::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • On the Essential Dimension of Cyclic P-Groups
    1 On the essential dimension of cyclic p-groups Mathieu Florence1 December 2006 Abstract. Let p be a prime number and r ≥ 1 an integer. We compute the essential dimension of Z/prZ over fields of characteristic not p, containing the p-th roots of unity (theorem 3.1). In particular, we have edQ(Z/8Z) = 4, a result which was conjectured by Buhler and Reichstein in 1995 (unpublished). Keywords and Phrases: Galois cohomology, essential dimension, Severi-Brauer varieties. A la m´emoire de mon p`ere. Acknowledgements We thank Jean Fasel and Giordano Favi for fruitful discussions about essential dimension. Contents Acknowledgements 1 1. Introduction 1 2. Some auxiliary results 2 3. The main theorem 5 References 6 1. Introduction The notion of essential dimension was introduced by Buhler and Reichstein for finite groups in [BR]. It was later generalized by Reichstein to arbitrary linear algebraic groups ([Re]). Throughout this paper, we shall assume that the reader is somewhat familiar with this concept. A convenient and comprehensive reference on this subject is [BF]. Definition 1.1. Let k be a field, and G a (smooth) linear algebraic k-group. The essential dimension of G over k, denoted by edk(G), is the smallest nonnegative integer n with the following property. For each field extension K/k, and each GK -torsor T −→ Spec(K), there exists a ′ ′ ′ subfield K of K, containing k, and a GK′ -torsor T −→ Spec(K ), such that ′ i) The GK -torsors T and TK are isomorphic, ii) The transcendence degree of K′/k is equal to n.
    [Show full text]
  • Essential Dimension
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 4, October 2017, Pages 635–661 http://dx.doi.org/10.1090/bull/1564 Article electronically published on December 19, 2016 ESSENTIAL DIMENSION ALEXANDER S. MERKURJEV Abstract. In this paper we survey research on the essential dimension that was introduced by J. Buhler and Z. Reichstein. Informally speaking, the es- sential dimension of a class of algebraic objects is the minimal number of algebraically independent parameters one needs to define any object in the class. The notion of essential dimension, which is defined in elementary terms, has surprising connections to many areas of algebra, such as algebraic geome- try, algebraic K-theory, Galois cohomology, representation theory of algebraic groups, theory of fibered categories and valuation theory. The highlights of the survey are the computations of the essential dimensions of finite groups, groups of multiplicative type and the spinor groups. 1. Introduction The essential dimension of an algebraic object is an integer that measures the complexity of the object. For example, let Q =(a, b)K be a quaternion algebra over a field extension K of a base field F of characteristic not 2. That is, let Q be a four-dimensional algebra over K with basis {1,i,j,ij} and multiplication table i2 = a, j2 = b, ij = −ji,wherea and b are nonzero elements in K.Thus,Q is determined by two parameters a and b. Equivalently, we can say that the algebra Q is defined over the subfield K = F (a, b)ofK,namely,Q Q ⊗K K for the quaternion algebra Q =(a, b)K over the field K of transcendence degree at most 2overF .
    [Show full text]
  • Essential Dimension and Canonical Dimension of Gerbes Banded by Groups of Multiplicative Type
    ESSENTIAL DIMENSION AND CANONICAL DIMENSION OF GERBES BANDED BY GROUPS OF MULTIPLICATIVE TYPE ROLAND LOTSCHER¨ Abstract. We prove the formula ed(X ) = cdim(X ) + ed(A) for any gerbe X banded by an algebraic group A which is the kernel of a homomorphism of algebraic tori Q → S with Q invertible and S split. This result is applied to prove new results on the essential dimension of algebraic groups. 1. Introduction Essential dimension is a notion of complexity of algebraic and geometric objects, introduced by J. Buhler and Z. Reichstein [BR97] around 1995 and in its most general form by A. Merkurjev [BF03]. The essential dimension of an algebraic group G over a field F is defined as the least integer n such that every G-torsor over a field extension K/F is obtained up to isomorphism by scalar extension from a G-torsor over an intermediate field K0 of transcendence degree at most n over F . It is denoted by ed(G). The essential dimension of an algebraic stack X over F is defined similarly (see section 2), where G-torsors are replaced by objects of X . For every algebraic group (and every group algebraic space) G over F there is the classifying stack BG, whose objects are G-torsors. In particular ed(G) = ed(BG). An algebraic stack X of finite type over F is called a gerbe, if it becomes iso- morphic to BG for some group algebraic space G over a finite extension of F (see [Stacks, Definition 06QC and Lemma 06QH]). In particular BG is a gerbe for any algebraic group G.
    [Show full text]
  • On the Essential Dimension of Central Simple Algebras
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Thesis and Dissertation Archive - Università di Pisa Dipartimento di Matematica Tesi di laurea magistrale On the Essential Dimension of Central Simple Algebras Relatore: Prof. Angelo Vistoli Candidato: Justin Lacini Controrelatore: Prof. Marco Franciosi Anno Accademico 2014/2015 2 Contents 1 Noncommutative rings 9 1.1 General properties . 9 1.2 Central simple algebras . 12 1.3 The Brauer Group . 16 1.4 Azumaya algebras . 19 2 Descent theory 23 2.1 Projective linear group scheme . 23 2.2 Equivalence . 24 2.3 Cohomology . 27 3 Essential dimension 31 3.1 General properties . 31 3.2 Essential p-dimension . 32 3.3 Essential dimension of algebraic groups . 33 3.4 Versal pairs . 35 4 Computations 41 4.1 Upper bounds . 41 4.1.1 Essential dimension of crossed products . 41 4.1.2 Brauer factor sets . 44 4.1.3 Universal algebras . 46 4.1.4 Essential p-dimension . 47 4.2 Lower bounds . 50 4.2.1 Preliminaries . 50 4.2.2 Brauer group and algebraic tori . 52 4.2.3 Essential dimension of algebraic tori . 54 4.2.4 Degeneration . 56 4.2.5 Multiple degeneration . 58 3 4 CONTENTS Introduction In this thesis we present the notion of essential dimension and give estimates for the essential dimension of the algebraic group P GLn. Essential dimension was introduced for finite groups by J.Buhler and Z.Reichstein in [5] and was extended to the class of algebraic groups over algebraically closed fields by Z.Reichstein in [25].
    [Show full text]
  • Essential Dimension: a Functorial Point of View (After A. Merkurjev)
    Documenta Math. 279 Essential Dimension: a Functorial Point of View (After A. Merkurjev) Gregory´ Berhuy, Giordano Favi Received: September 9, 2003 Communicated by Ulf Rehmann Abstract. In these notes we develop a systematic study of the es- sential dimension of functors. This approach is due to A. Merkurjev and can be found in his unpublished notes [12]. The notion of essen- tial dimension was earlier introduced for finite groups by J. Buhler and Z. Reichstein in [3] and for an arbitrary algebraic group over an algebraically closed field by Z. Reichstein in [14]. This is a numerical invariant depending on the group G and the field k. This number is denoted by edk(G). In this paper we insist on the behaviour of the essential dimension under field extension k0/k and try to compute edk(G) for any k. This will be done in particular for the group Z/n when n 5 and for the circle group. Along the way we define the essential≤ dimension of functor with versal pairs and prove that all the different notions of essential dimension agree in the case of algebraic groups. Applications to finite groups are given. Finally we give a proof of the so-called homotopy invariance, that is edk(G) = edk(t)(G), for an algebraic group G defined over an infinite field k. 2000 Mathematics Subject Classification: 11E72, 12G05, 14L15, 14L30. Keywords and Phrases: Essential dimension, algebraic groups, Galois cohomology, cohomological invariants, group scheme actions, torsors. Acknowledgements The authors would warmly thank P. Chabloz, R. Garibaldi, M. Ojanguren and J.-P.
    [Show full text]
  • Differential Essential Dimension
    DIFFERENTIAL ESSENTIAL DIMENSION Man Cheung Tsui A DISSERTATION in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2021 Supervisor of Dissertation Julia Hartmann, Professor of Mathematics Graduate Group Chairperson Julia Hartmann, Professor of Mathematics Dissertation Committee David Harbater, Christopher H. Browne Distinguished Professor in the School of Arts and Sciences Julia Hartmann, Professor of Mathematics Robin Pemantle, Merriam Term Professor of Mathematics ABSTRACT DIFFERENTIAL ESSENTIAL DIMENSION Man Cheung Tsui Julia Hartmann We define an analogue of essential dimension in differential Galois theory. As application, we show that the number of coefficients in a general homogeneous linear differential equation over a field cannot be reduced via gauge transformations over the given field. We also give lower bounds on the number of parameters needed to write down certain generic Picard- Vessiot extensions. ii TABLE OF CONTENTS ABSTRACT . ii CHAPTER 1 : Introduction .............................. 1 1.1 Simplifying polynomials via Tschirnhaus transformations. 1 1.2 Simplifying differential equations . 2 1.3 Generic Picard-Vessiot extensions . 3 1.4 Outline of thesis . 4 CHAPTER 2 : Background ............................... 5 2.1 Algebra . 5 2.2 Differential algebra . 5 2.3 Picard-Vessiot theory . 9 2.4 Generic Picard-Vessiot extensions . 11 2.5 Differential Hopf-Galois extension . 12 2.6 Differential schemes . 13 2.7 Differential torsors . 14 CHAPTER 3 : Essential Dimension .......................... 15 3.1 Classes of objects as functors . 15 3.2 Essential dimension . 17 n 3.3 Differential essential dimension of Gm ...................... 19 CHAPTER 4 : Twisted Forms and Cohomology . 22 4.1 Φ-structures and descent along differential Hopf-Galois extensions .
    [Show full text]
  • Essential Dimension, Spinor Groups, and Quadratic Forms
    ANNALS OF MATHEMATICS Essential dimension, spinor groups, and quadratic forms By Patrick Brosnan, Zinovy Reichstein, and Angelo Vistoli SECOND SERIES, VOL. 171, NO. 1 January, 2010 anmaah Annals of Mathematics, 171 (2010), 533–544 Essential dimension, spinor groups, and quadratic forms By PATRICK BROSNAN, ZINOVY REICHSTEIN, and ANGELO VISTOLI Abstract We prove that the essential dimension of the spinor group Spinn grows ex- ponentially with n and use this result to show that quadratic forms with trivial discriminant and Hasse-Witt invariant are more complex, in high dimensions, than previously expected. 1. Introduction Let K be a field of characteristic different from 2 containing a square root of 1,W.K/ be the Witt ring of K and I.K/ be the ideal of classes of even- dimensional forms in W.K/; cf. [Lam73]. By abuse of notation, we will write q I a.K/ if the Witt class of the nondegenerate quadratic form q defined over 2 K lies in I a.K/. It is well known that every q I a.K/ can be expressed as a 2 sum of the Witt classes of a-fold Pfister forms defined over K; see, e.g., [Lam73, Prop. II.1.2]. If dim.q/ n, it is natural to ask how many Pfister forms are needed. D When a 1 or 2, it is easy to see that n Pfister forms always suffice; see Proposition D 4-1. In this paper we will prove the following result, which shows that the situation is quite different when a 3. D THEOREM 1-1.
    [Show full text]
  • Essential Dimension: a Survey
    ESSENTIAL DIMENSION: A SURVEY ALEXANDER S. MERKURJEV Abstract. In the paper we survey research on the essential dimension. The highlights of the survey are the computations of the essential dimensions of fi- nite groups, groups of multiplicative type and the spinor groups. We present self-contained proofs of these cases and give applications in the theory of simple algebras and quadratic forms. 1. Introduction Informally speaking, the essential dimension of an algebraic object is the minimal number of algebraically independent parameters one needs to define the object. To motivate this notion, let us consider an example where the object is a quadratic extension of a field. Let F be a base field, K=F a field extension and L=K a quadratic extension. Then L is generated over K by an element α with the minimal polynomial t2 + at + b with a; b 2 K, so L can be given by the two parameters a and b. But we can do better: if both a and b are nonzero, by scaling α, we can achieve a = b, i.e., just one parameter a is needed. Equivalently, we can say that the quadratic extension L=K is defined over the smaller field K0 = F (a), namely, if 2 ' ⊗ L0 = K0[t]=(t + at + a), then L L0 K0 K, i.e., L=K is defined over the field K0 of transcendence degree at most 1 over F . We say that the essential dimension of L=K is at most 1. The notion of the essential dimension was defined by J. Buhler and Z.
    [Show full text]
  • Algebraic Tori and Essential Dimension
    University of California Los Angeles Algebraic Tori and Essential Dimension A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Anthony Michael Ruozzi 2012 c Copyright by Anthony Michael Ruozzi 2012 Abstract of the Dissertation Algebraic Tori and Essential Dimension by Anthony Michael Ruozzi Doctor of Philosophy in Mathematics University of California, Los Angeles, 2012 Professor Alexander Merkurjev, Chair Interest in essential dimension problems has been growing over the past decade. In part, it is because the idea of essential dimension captures quite elegantly the problem of parametrizing a wide range of algebraic objects. But perhaps more, it is because the study of essential dimension requires most of the algebraic arsenal. What began as a problem in Galois co- homology and representation theory now has connections to versal torsors, stacks, motives, birational geometry, and invariant theory. This exposition will focus on just a small bit of this theory: algebraic tori and how they can be used to help us calculate the essential p-dimension for PGLn. ii The dissertation of Anthony Michael Ruozzi is approved. Amit Sahai Paul Balmer Richard Elman Alexander Merkurjev, Committee Chair University of California, Los Angeles 2012 iii Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 1.1 Basic Notations . 2 2 Groups and Algebras :::::::::::::::::::::::::::::::: 3 2.1 p-closed fields . 3 2.2 Central Simple Algebras . 4 2.2.1 Etale´ Algebras . 5 2.2.2 Division Algebras of Degree ps ...................... 5 2.3 Algebraic Groups . 8 2.3.1 Groups of Multiplicative Type . 9 2.3.2 Galois Cohomology .
    [Show full text]
  • Essential Dimension of Simple Algebras with Involutions
    Essential dimension of simple algebras with involutions S. Baek Abstract ≤ ≤ j Let 1 m n be integers with m n and Algn;m the class of central simple algebras of degree n and exponent dividing m. In this paper, we find new, improved upper bounds for the essential dimension and 2-dimension of Algn;2. In particular, we show that ed2(Alg16;2) = 24 over a field F of characteristic different from 2. 1. Introduction Let T : Fields=F ! Sets be a functor (called an algebraic structure) from the category Fields=F of field extensions over F to the category Sets of sets. For instance, T (E) with E 2 Fields=F can be the sets of isomorphism classes of central simple E-algebras of degree n, ´etale E-algebras of rank n, quadratic forms over E of dimension n, torsors (principal homogeneous spaces) over E under a given algebraic group, etc. For fields E; E0 2 Fields=F , a 0 field homomorphism f : E ! E over F and α 2 T (E), we write αE0 for the image of α under the morphism T (f): T (E) !T (E0). The notion of essential dimension was introduced by J. Buhler and Z. Reichstein in [5] and was generalized to algebraic structures by A. Merkurjev in [4] and [11]. The essential dimension of an algebraic structure is defined to be the smallest number of parameters needed to define the structure. Let E 2 Fields=F and K ⊂ E a subfield over F . An element α 2 T (E) is said to be defined over K and K is called a field of definition of α if there exists an element β 2 T (K) such that βE = α.
    [Show full text]
  • The Essential Dimension of Low Dimensional Tori Via Lattices
    The Essential Dimension of Low Dimensional Tori via Lattices Gareth Case Department of Mathematics and Statistics Lancaster University A thesis presented for the degree of Doctor of Philosophy May 2019 2 Declaration I declare that the present thesis was prepared by me and none of its contents were obtained by means that are against the law. I also declare that the present thesis is a part of a Ph.D. Programme at Lancaster University. This thesis has never before been a subject of any procedure of obtaining an academic degree. Gareth Case May 2019 3 Acknowledgements A Ph.D. thesis may seem like a solitary undertaking, but there are many people that go in to making it a reality; here is a small subset I would like to single out. Firstly, to my supervisor, Dr Mark MacDonald, for his ever-present encouragement and guidance. There was always time in his busy schedule for a friendly meeting to discuss my half-baked mathematical ideas, offering a great deal of clarity with a thoughtful question or comment. I am lucky to have had a supervisor from whom I have learned such a lot, not solely in mathematics, but in effective teaching and presenting. I will take these skills with me as I leave Lancaster, and for that I will be forever grateful. To my external examiner Professor Martin Liebeck, thank you for your patience and time; your input improved this thesis considerably. To my internal examiner, and bee-keeping HDC chair Dr Nadia Mazza, who always gave insightful comments and direction for study.
    [Show full text]