On the Essential Dimension of Central Simple Algebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Essential Dimension of Finite Groups
University of California Los Angeles Essential Dimension of Finite Groups A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Wanshun Wong 2012 c Copyright by Wanshun Wong 2012 Abstract of the Dissertation Essential Dimension of Finite Groups by Wanshun Wong Doctor of Philosophy in Mathematics University of California, Los Angeles, 2012 Professor Alexander Merkurjev, Chair In this thesis we study the essential dimension of the first Galois cohomology functors of finite groups. Following the result by N. A. Karpenko and A. S. Merkurjev about the essential dimension of finite p-groups over a field containing a primitive p-th root of unity, we compute the essential dimension of finite cyclic groups and finite abelian groups over a field containing all primitive p-th roots of unity for all prime divisors p of the order of the group. For the computation of the upper bound of the essential dimension we apply the techniques about affine group schemes, and for the lower bound we make use of the tools of canonical dimension and fibered categories. We also compute the essential dimension of small groups over the field of rational numbers to illustrate the behavior of essential dimension when the base field does not contain all relevant primitive roots of unity. ii The dissertation of Wanshun Wong is approved. Amit Sahai Richard Elman Paul Balmer Alexander Merkurjev, Committee Chair University of California, Los Angeles 2012 iii Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: -
On the Essential Dimension of Cyclic P-Groups
1 On the essential dimension of cyclic p-groups Mathieu Florence1 December 2006 Abstract. Let p be a prime number and r ≥ 1 an integer. We compute the essential dimension of Z/prZ over fields of characteristic not p, containing the p-th roots of unity (theorem 3.1). In particular, we have edQ(Z/8Z) = 4, a result which was conjectured by Buhler and Reichstein in 1995 (unpublished). Keywords and Phrases: Galois cohomology, essential dimension, Severi-Brauer varieties. A la m´emoire de mon p`ere. Acknowledgements We thank Jean Fasel and Giordano Favi for fruitful discussions about essential dimension. Contents Acknowledgements 1 1. Introduction 1 2. Some auxiliary results 2 3. The main theorem 5 References 6 1. Introduction The notion of essential dimension was introduced by Buhler and Reichstein for finite groups in [BR]. It was later generalized by Reichstein to arbitrary linear algebraic groups ([Re]). Throughout this paper, we shall assume that the reader is somewhat familiar with this concept. A convenient and comprehensive reference on this subject is [BF]. Definition 1.1. Let k be a field, and G a (smooth) linear algebraic k-group. The essential dimension of G over k, denoted by edk(G), is the smallest nonnegative integer n with the following property. For each field extension K/k, and each GK -torsor T −→ Spec(K), there exists a ′ ′ ′ subfield K of K, containing k, and a GK′ -torsor T −→ Spec(K ), such that ′ i) The GK -torsors T and TK are isomorphic, ii) The transcendence degree of K′/k is equal to n. -
Quaternion Algebras and Modular Forms
QUATERNION ALGEBRAS AND MODULAR FORMS JIM STANKEWICZ We wish to know about generalizations of modular forms using quater- nion algebras. We begin with preliminaries as follows. 1. A few preliminaries on quaternion algebras As we must to make a correct statement in full generality, we begin with a profoundly unhelpful definition. Definition 1. A quaternion algebra over a field k is a 4 dimensional vector space over k with a multiplication action which turns it into a central simple algebra Four dimensional vector spaces should be somewhat familiar, but what of the rest? Let's start with the basics. Definition 2. An algebra B over a ring R is an R-module with an associative multiplication law(hence a ring). The most commonly used examples of such rings in arithmetic geom- etry are affine polynomial rings R[x1; : : : ; xn]=I where R is a commu- tative ring and I an ideal. We can have many more examples though. Example 1. If R is a ring (possibly non-commutative), n 2 Z≥1 then the ring of n by n matrices over R(henceforth, Mn(R)) form an R- algebra. Definition 3. A simple ring is a ring whose only 2-sided ideals are itself and (0) Equivalently, a ring B is simple if for any ring R and any nonzero ring homomorphism φ : B ! R is injective. We show here that if R = k and B = Mn(k) then B is simple. Suppose I is a 2-sided ideal of B. In particular, it is a right ideal, so BI = I. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
Algebraic Groups I. Homework 8 1. Let a Be a Central Simple Algebra Over a field K, T a K-Torus in A×
Algebraic Groups I. Homework 8 1. Let A be a central simple algebra over a field k, T a k-torus in A×. (i) Adapt Exercise 5 in HW5 to make an ´etalecommutative k-subalgebra AT ⊆ A such that (AT )ks is × generated by T (ks), and establish a bijection between the sets of maximal k-tori in A and maximal ´etale commutative k-subalgebras of A. Deduce that SL(A) is k-anisotropic if and only if A is a division algebra. (ii) For an ´etalecommutative k-subalgebra C ⊆ A, prove ZA(C) is a semisimple k-algebra with center C. × (iv) If T is maximal as a k-split subtorus of A prove T is the k-group of units in AT and that the (central!) simple factors Bi of BT := ZA(AT ) are division algebras. (v) Fix A ' EndD(V ) for a right module V over a central division algebra D, so V is a left A-module and Q × V = Vi with nonzero left Bi-modules Vi. If T is maximal as a k-split torus in A , prove Vi has rank 1 × × over Bi and D, so Bi ' D. Using D-bases, deduce that all maximal k-split tori in A are A (k)-conjugate. 2. For a torus T over a local field k (allow R, C), prove T is k-anisotropic if and only if T (k) is compact. 3. Let Y be a smooth separated k-scheme locally of finite type, and T a k-torus with a left action on Y . -
Subfields of Central Simple Algebras
The Brauer Group Subfields of Algebras Subfields of Central Simple Algebras Patrick K. McFaddin University of Georgia Feb. 24, 2016 Patrick K. McFaddin University of Georgia Subfields of Central Simple Algebras The Brauer Group Subfields of Algebras Introduction Central simple algebras and the Brauer group have been well studied over the past century and have seen applications to class field theory, algebraic geometry, and physics. Since higher K-theory defined in '72, the theory of algebraic cycles have been utilized to study geometric objects associated to central simple algebras (with involution). This new machinery has provided a functorial viewpoint in which to study questions of arithmetic. Patrick K. McFaddin University of Georgia Subfields of Central Simple Algebras The Brauer Group Subfields of Algebras Central Simple Algebras Let F be a field. An F -algebra A is a ring with identity 1 such that A is an F -vector space and α(ab) = (αa)b = a(αb) for all α 2 F and a; b 2 A. The center of an algebra A is Z(A) = fa 2 A j ab = ba for every b 2 Ag: Definition A central simple algebra over F is an F -algebra whose only two-sided ideals are (0) and (1) and whose center is precisely F . Examples An F -central division algebra, i.e., an algebra in which every element has a multiplicative inverse. A matrix algebra Mn(F ) Patrick K. McFaddin University of Georgia Subfields of Central Simple Algebras The Brauer Group Subfields of Algebras Why Central Simple Algebras? Central simple algebras are a natural generalization of matrix algebras. -
Essential Dimension
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 54, Number 4, October 2017, Pages 635–661 http://dx.doi.org/10.1090/bull/1564 Article electronically published on December 19, 2016 ESSENTIAL DIMENSION ALEXANDER S. MERKURJEV Abstract. In this paper we survey research on the essential dimension that was introduced by J. Buhler and Z. Reichstein. Informally speaking, the es- sential dimension of a class of algebraic objects is the minimal number of algebraically independent parameters one needs to define any object in the class. The notion of essential dimension, which is defined in elementary terms, has surprising connections to many areas of algebra, such as algebraic geome- try, algebraic K-theory, Galois cohomology, representation theory of algebraic groups, theory of fibered categories and valuation theory. The highlights of the survey are the computations of the essential dimensions of finite groups, groups of multiplicative type and the spinor groups. 1. Introduction The essential dimension of an algebraic object is an integer that measures the complexity of the object. For example, let Q =(a, b)K be a quaternion algebra over a field extension K of a base field F of characteristic not 2. That is, let Q be a four-dimensional algebra over K with basis {1,i,j,ij} and multiplication table i2 = a, j2 = b, ij = −ji,wherea and b are nonzero elements in K.Thus,Q is determined by two parameters a and b. Equivalently, we can say that the algebra Q is defined over the subfield K = F (a, b)ofK,namely,Q Q ⊗K K for the quaternion algebra Q =(a, b)K over the field K of transcendence degree at most 2overF . -
Lectures on Non-Commutative Rings
Lectures on Non-Commutative Rings by Frank W. Anderson Mathematics 681 University of Oregon Fall, 2002 This material is free. However, we retain the copyright. You may not charge to redistribute this material, in whole or part, without written permission from the author. Preface. This document is a somewhat extended record of the material covered in the Fall 2002 seminar Math 681 on non-commutative ring theory. This does not include material from the informal discussion of the representation theory of algebras that we had during the last couple of lectures. On the other hand this does include expanded versions of some items that were not covered explicitly in the lectures. The latter mostly deals with material that is prerequisite for the later topics and may very well have been covered in earlier courses. For the most part this is simply a cleaned up version of the notes that were prepared for the class during the term. In this we have attempted to correct all of the many mathematical errors, typos, and sloppy writing that we could nd or that have been pointed out to us. Experience has convinced us, though, that we have almost certainly not come close to catching all of the goofs. So we welcome any feedback from the readers on how this can be cleaned up even more. One aspect of these notes that you should understand is that a lot of the substantive material, particularly some of the technical stu, will be presented as exercises. Thus, to get the most from this you should probably read the statements of the exercises and at least think through what they are trying to address. -
RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e. -
Differential Central Simple Algebras and Picard–Vessiot
Differential Central Simple Algebras and Picard–Vessiot Representations Lourdes Juan Department of Mathematics Texas Tech University Lubbock TX 79409 Andy R. Magid Department of Mathematics University of Oklahoma Norman OK 73019 March 7, 2007 Abstract A differential central simple algebra, and in particular a differential matrix algebra, over a differential field K with constants C can be trivial- ized by a Picard–Vessiot (differential Galois) extension E. In the matrix algebra case, there is a correspondence between K algebras trivialized by E and representations of the Galois group of E over K in P GLn(C), which can be interpreted as cocyles equivalent up to coboundaries. 1 Introduction Let K be a differential field with algebraically closed characteristic zero field of constants C and derivation D = DK . By a differential central simple al- gebra (DCSA) over K we mean a pair (A, D) where A is a central simple K algebra and D is a derivation of A extending the derivation D of its center K. Given two such pairs (A1, D1) and (A2, D2), we can form the differential algebra (A1 ⊗ A2, D1 ⊗ D2), where the derivation D1 ⊗ D2 is given by D1 ⊗ 1 + 1 ⊗ D2. Morphisms of DCSA’s over K are K algebra homomorphisms preserving deriva- tions. We denote the isomorphism class of (A, D) by [A, D]. The above tensor product defines a monoid operation on the isomorphism classes (the identity being the class [K, DK ]), and hence we can form the corresponding universal diff group K0 Az(K). (A central simple algebra (CSA) over a field is a special case of Azumaya, or central separable, algebras over rings; Az is an abbre- viation for Azumaya.) The corresponding object for K when derivations are not considered is the familiar K0Az(K) as defined by Bass in [1, Chapter III]. -
Essential Dimension and Canonical Dimension of Gerbes Banded by Groups of Multiplicative Type
ESSENTIAL DIMENSION AND CANONICAL DIMENSION OF GERBES BANDED BY GROUPS OF MULTIPLICATIVE TYPE ROLAND LOTSCHER¨ Abstract. We prove the formula ed(X ) = cdim(X ) + ed(A) for any gerbe X banded by an algebraic group A which is the kernel of a homomorphism of algebraic tori Q → S with Q invertible and S split. This result is applied to prove new results on the essential dimension of algebraic groups. 1. Introduction Essential dimension is a notion of complexity of algebraic and geometric objects, introduced by J. Buhler and Z. Reichstein [BR97] around 1995 and in its most general form by A. Merkurjev [BF03]. The essential dimension of an algebraic group G over a field F is defined as the least integer n such that every G-torsor over a field extension K/F is obtained up to isomorphism by scalar extension from a G-torsor over an intermediate field K0 of transcendence degree at most n over F . It is denoted by ed(G). The essential dimension of an algebraic stack X over F is defined similarly (see section 2), where G-torsors are replaced by objects of X . For every algebraic group (and every group algebraic space) G over F there is the classifying stack BG, whose objects are G-torsors. In particular ed(G) = ed(BG). An algebraic stack X of finite type over F is called a gerbe, if it becomes iso- morphic to BG for some group algebraic space G over a finite extension of F (see [Stacks, Definition 06QC and Lemma 06QH]). In particular BG is a gerbe for any algebraic group G. -
Determination of the Differentiably Simple Rings with a Minimal Ideal Author(S): Richard E
Annals of Mathematics Determination of the Differentiably Simple Rings with a Minimal Ideal Author(s): Richard E. Block Source: The Annals of Mathematics, Second Series, Vol. 90, No. 3 (Nov., 1969), pp. 433-459 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1970745 Accessed: 07/11/2010 19:03 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics. http://www.jstor.org Determinationof the differentiablysimple ringswith a minimalideal* By RICHARD E.