Mt. Erebus Surprises Ross Island Inhabitants in This Issue Mt

Total Page:16

File Type:pdf, Size:1020Kb

Mt. Erebus Surprises Ross Island Inhabitants in This Issue Mt antarc tic OFTHE ] UNITED U STATES December 1984 National Science Foundation Volume XIX—Number 4 Mt. Erebus surprises Ross Island inhabitants In this issue Mt. Erebus surprises Ross Island On 13 September 1984, Mt. Erebus, the activity (volcanic activity characterized by inhabitants ................ worlds most southern active volcano, was fire fountains of lava from a central crater) Birds and marine mammals in the jolted by a number of large explosions. has only been recorded by the seismic sta- Palmer Station area These events were recorded not only by tions on the volcanos slopes. Structural and metamorphic study the five seismic stations on the volcanos of the Beagle Channel lineament slopes but also by infrasonic detectors at From 13 to 19 September, 8 to 19 large Chilean Tierra del Fuego: R/V Windless Bight (29 kilometers away), the explosions occurred each day on the 3,794- Hero cruise 84-3 ............ seismograph at New Zealands Scott Base meter high volcano. The explosions de- Marine living resources act (37 kilometers away), and a tidal gravimeter creased to two to eight per day between becomes law ............... 11 at the Amundsen-Scott South Pole Sta- 20 and 26 September, then increased to Erich Bloch becomes eighth NSF tion (about 1,400 kilometers from Mt. 12 to 27 per day from 26 to 29 September. director .................. 12 Erebus). Before September strombolian During this time personnel at McMurdo, U. S. President commemorates 25 th anniversary of Treaty 12 New Division Director at DPP 13 New technique for relative age On 13 September 1984 Mt. Erebus was shaken by the first of a many large explosions. This dating using closed-basin lakes view of the crater rim of Mt. Erebus was taken from the southwest on 20 October. Large vol- in Antarctica ............... 13 canic bombs can be seen on the west side of the mountain. In the background is Mt. Terror. Newsletter 10, International NSF photo by Philip R. Kyle. Antarctic Glaciological Project activities, 1982-1983 16 NSF recognizes P. Lenie 18 Polar division gets new operations manager 18 Obituary: David M. Tyree 18 Senate confirms R. R. Colwell as National Science Board member .................. 19 Film on krill behavior available 19 Foundation awards of funds for antarctic projects, 1 July to iff 30 September 1984 20 Weather at U. S. stations ....... 23 Correction ................... 24 - the U. S. station on Ross Island about 37 kilometers from Mt. Erebus, observed numerous mushroom-shaped plumes of various colors; these rose as much as 2,000 meters above the summit. Early in the morning on 16 September and during mid- morning on 26 September, observers at McMurdo Station reported hearing explos- ions; a few people also reported feeling slight earth tremors. Pmw From the sea ice near Hut Point, Ross Island, other observers saw a bright glow around the volcanos summit on 17 Sep- tember. Six minutes later incandescent vol- canic bombs were ejected from the sum- mit about 600 meters into the air. Glowing tephra from this explosion, which was one of the largest recorded by the infrasonic and seismic equipment, was observed by people at Butter Point about 70 kilome- ters away. From Cape Royds others noted that the northwest slopes of Mt. Erebus were covered with new ash down to an elevation of approximately 3,400 meters. Aw Around the summit crater fumaroles were or A. substantially more active, and on the lower eastern flank a 300- to 500-meter high, narrow plume (possibly a geyser) was seen. - &JJ During October the seismic network on the volcano, the Scott Base seimograph, NSF photo by Philip A. Kyle. The main crater floor is littered with volcanic bombs and other debris; the inner crater, where up until September 1984 there was an active lava lake, has solidified and dommed up by more than 100 meters over previous levels. and the Windless Bight infrasonic detec- the outer crater rim after 3 to 4 days of tors recorded between 6 and 27 large erup- heavy snow that covered earlier ejected tions daily. Most of these explosions ejected materials. Before Septembers increased volcanic bombs that averaged about 2 to 4 activity, few volcanic bombs ejected from meters in diameter but were at times as the lava lake had ever reached the crater large as 6 to 8 meters in diameter. Some of rim. these bombs were thrown as high as 500 The volcano continued to be active into meters above the volcanos summit, and Editor Winifred Reuning December 1984. Although gas coming from meters of most landed near the upper 150 the volcano prevented the scientists from Antarctic Journal of the United the outer crater rim. making direct observations, they believe established in 1966, reports States, that a small lava lake has formed. Sounds on U.S. activities in Antarctica and On 20 October Philip Kyle, the geo- related activities elsewhere, and on physicist who coordinates the U. S., New emitted from the crater seem to support trends in the U.S. Antarctic Research Zealand, and Japanese seismic investiga- this theory. Program. It is published quarterly tion of Mt. Erebus, and David Bresnahan, (March, June, September, and De- the National Science Foundation Repre- cember) with a fifth annual review sentative at McMurdo Station, flew over History of volcanic activity issue by the Division of Polar Pro- the summit crater in a Hercules ski-equip- More than a century ago British explorer grams, National Science Foun- ped airplane and made the first direct obser- James Ross and his party were the first dation, Washington, D.C. 20550. people to see Ross Islands active volcano Telephone: 2021357-7817. vations of the crater and lava lake since the beginning of the eruptions. Members and observed activity that may have been The Antarctic Journal is sold by the of this international team, which estab- similar to that which occurred in Septem- copy or on subscription through the lished and maintains the seismic stations ber 1984. He described the volcano, which U.S. Government Printing Office. Re- on Mt. Erebus, last observed the lava lake he named Mt. Erebus, as follows: quests for prices of individual issues in late 1983. At that time the lake was a and subscriptions, address changes, 100 "Mt. Erebus was observed to emit smoke fluid, convecting pool and was about and flame in unusual quantities. A and information about other subscrip- meters below the inner crater rim. After tion matters should be sent to the volume of dense smoke was projected at his October flight Dr. Kyle reported that Superintendent of Documents, U.S. each successive jet with great force, in a Government Printing Office, Washing- the lava lake surface had solidified and vertical column, to the height of between formed a dome that sloped upward to ton, D.C. 20402. 1,500 and 2,000 feet above the the mouth within about 30 meters of the inner crater of the crater. The diameter of the rim. The hardened lava was piled up against The Director of the National Science columns of smoke was 200 and 300 feet, the inner craters north wall and sloped Foundation has determined that the as near as we could measure it; whenever publication of this periodical is nec- southward. Near the center of the uplif- the smoke cleared away, the bright red essary in the transaction of the ted, hardened lava, a small vent, which flame that filled the mouth of the crater public business required by law of contained incandescent material, was pre- this agency. Use of funds for print- was clearly perceptible; and some of the sent; scattered fumaroles had formed in officers believed they could see streams of ing this periodical has been approved the lake surface. by the director of the Office of Man- lava pouring down its sides until lost agement and Budget through 31 Although Dr. Kyle did not observe any beneath the snow which descended from March 1986. explosions, he reported that about 500 to a few hundred feet below the crater...... 1,000 volcanic bombs had accumulated on (Ross, 1847) 2 Antarctic Journal Although since January 1841 Mt. Erebus large explosions. The geophysicists esti- Kyle, Philip R. and Peter Otway. 1982. has continued to be active, this activity mate that the initial explosions threw vol- Volcanic activity of Mount Erebus, has not been as dramatic as that observed canic bombs as large as 10 meters in diame- 1981-1982. Antarctic Journal of the by Ross. Between 1841 and 1956, few ter more than 1.5 kilometers from the crater. United States, Vol. 17, no. 5. observations of the volcano were made. A Although Mt. Erebus entered a more explo- U. S. Navy airplane flew over Mt. Erebus sive phase of activity this austral sum- Kyle, Philip R., Raymond R. Dibble, Wer- in 1963, and photographs were taken of mer, the geophysicists believe that this ner F. Giggenbach, and J. (Harry) Keys. the inner crater. These photographs sug- activity may indicate that the volcano is 1982. Volcanic activity associated with gested to scientists that there was molten declining in activity. the anorthoclase phonolite lava lake, lava in the crater at that time (Kyle et al, Mount Erebus, Antarctica. In C. Crad- 1982). dock (ed . ), Antarctic Geoscience. Madi- son, Wisconsin: Univerisity of Wis- In 1972 geophysicists began making References consin Press. regular observations of the summit crater. Since that time they have watched the inner Kienle, J., K. Kaminuma, and R. R. Dib- Ross, James. 1847. A Voyage of Discov- crater lava lake develop from a few small ble. In press. Seismicity of Mount ery and Research in the Southern and patches of fluid lava around the crater floor Erebus and vicinity, 1983-1984.
Recommended publications
  • THE MOUNT EREBUS TRAGEDY Air New Zealand DC10-30 ZK-NZP, Flight NZ901 Th 28 November 1979
    THE MOUNT EREBUS TRAGEDY Air New Zealand DC10-30 ZK-NZP, Flight NZ901 th 28 November 1979 A REVIEW WAVERLEY PARSONS Graduate Certificate in Antarctic Studies 2003 1 TABLE OF CONTENTS ABSTRACT ................................................................................................................... 2 Introduction ................................................................................................. 3 Prelude: Before the Flight of NZ901 .......................................................... 4 Flight Preparation .......................................................................................................... 4 The Flight Path ............................................................................................................... 5 The Accident ............................................................................................... 7 Sector Whiteout ............................................................................................................. 8 Discovery of Wreckage ............................................................................................... 10 ‘Operation Overdue’ .................................................................................................... 12 The Aftermath ...........................................................................................14 The Offical Aircraft Accident Report – ‘Chippindale’s Report’ ................................. 14 The Royal Commission of Inquiry .............................................................................
    [Show full text]
  • MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures.
    [Show full text]
  • DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) for ANDRILL Mcmurdo Sound Portfolio Madrid, 9/20 De Junio 2003
    XXVI ATCM Working Paper WP-002-NZ Agenda Item: IV CEP 4a NEW ZEALAND Original: English DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Madrid, 9/20 de junio 2003 ANDRILL - The McMurdo Sound Portfolio An international research effort with the participation of Germany, Italy, New Zealand, the United Kingdom and the United States of America. DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Antarctica New Zealand Private Bag 4745, Christchurch Administration Building International Antarctic Centre 38 Orchard Road, Christchurch January 22, 2003 2 CONTENTS 1. NON-TECHNICAL SUMMARY.....................................................................................11 2. INTRODUCTION...........................................................................................................13 2.1 What is ANDRILL?...............................................................................................13 2.2 The CEE process.................................................................................................15 2.2.1 What is a CEE and why is it needed?....................................................15 2.2.2 Process for preparing the Draft CEE .....................................................15 3. DESCRIPTION OF PROPOSED ACTIVITES ..............................................................17 2.1 Purpose and Need...............................................................................................17 3.1.1 Scientific justification..............................................................................17
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Geology of Hut Point Peninsula, Ross Island
    significantly below their Curie temperatures (approxi- Wilson, R. L., and N. D. Watkins. 1967. Correlation of mately 550°C.). petrology and natural magnetic polarity in Columbia Plateau basalts. Geophysical Journal of the Royal Astro- Previous work (Pucher, 1969; Stacey and Banerjee, nomical Society, 12(4): 405-424. 1974) indicates that the CRM intensity acquired in a low field is significantly less than the TRM intensity. It thus would appear that if a CRM induced at temperatures considerably below the Curie tempera- Geology of Hut Point Peninsula, ture, contributes a significant proportion to the ob- Ross Island served NRM intensity, too low an intensity value will be assigned to the ancient field. Although it is too early to report a firm value for PHILIP R. KYLE the intensity of the ancient field during the imprint- Department of Geology ing of unit 13 and related flows, we think that the Victoria University strength of the ambient field was more likely to Wellington, New Zealand have been about 0.5 oe (based on samples at about 141 meters) than about 0.1 oe (based on samples SAMUEL B. TREVES 122.18 and 126.06 meters). The virtual dipole Department of Geology moment (Smith, 1967b) calculated for an estimated University of Nebraska field intensity of 0.5 oe at the site is 7 X 10 25 gauss Lincoln, Nebraska 68508 cubic centimeters. This is larger than the value of 5.5 X 1025 gauss cubic centimeters (Smith, 1967b) Hut Point Peninsula is about 20 kilometers long calculated on the basis of paleointensity experiments and 2 to 4 kilometers wide.
    [Show full text]
  • U.S. Advance Exchange of Operational Information, 2005-2006
    Advance Exchange of Operational Information on Antarctic Activities for the 2005–2006 season United States Antarctic Program Office of Polar Programs National Science Foundation Advance Exchange of Operational Information on Antarctic Activities for 2005/2006 Season Country: UNITED STATES Date Submitted: October 2005 SECTION 1 SHIP OPERATIONS Commercial charter KRASIN Nov. 21, 2005 Depart Vladivostok, Russia Dec. 12-14, 2005 Port Call Lyttleton N.Z. Dec. 17 Arrive 60S Break channel and escort TERN and Tanker Feb. 5, 2006 Depart 60S in route to Vladivostok U.S. Coast Guard Breaker POLAR STAR The POLAR STAR will be in back-up support for icebreaking services if needed. M/V AMERICAN TERN Jan. 15-17, 2006 Port Call Lyttleton, NZ Jan. 24, 2006 Arrive Ice edge, McMurdo Sound Jan 25-Feb 1, 2006 At ice pier, McMurdo Sound Feb 2, 2006 Depart McMurdo Feb 13-15, 2006 Port Call Lyttleton, NZ T-5 Tanker, (One of five possible vessels. Specific name of vessel to be determined) Jan. 14, 2006 Arrive Ice Edge, McMurdo Sound Jan. 15-19, 2006 At Ice Pier, McMurdo. Re-fuel Station Jan. 19, 2006 Depart McMurdo R/V LAURENCE M. GOULD For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/lmg/lmgsched.pdf R/V NATHANIEL B. PALMER For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/nbp/nbpsched.pdf SECTION 2 AIR OPERATIONS Information on planned air operations (see attached sheets) SECTION 3 STATIONS a) New stations or refuges not previously notified: NONE b) Stations closed or refuges abandoned and not previously notified: NONE SECTION 4 LOGISTICS ACTIVITIES AFFECTING OTHER NATIONS a) McMurdo airstrip will be used by Italian and New Zealand C-130s and Italian Twin Otters b) McMurdo Heliport will be used by New Zealand and Italian helicopters c) Extensive air, sea and land logistic cooperative support with New Zealand d) Twin Otters to pass through Rothera (UK) upon arrival and departure from Antarctica e) Italian Twin Otter will likely pass through South Pole and McMurdo.
    [Show full text]
  • Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at Mcmurdo Station O Arrival Brief; Receive Room Keys and Station Information
    PROGRAM INFO USAP Operational Risk Management Consequences Probability none (0) Trivial (1) Minor (2) Major (4) Death (8) Certain (16) 0 16 32 64 128 Probable (8) 0 8 16 32 64 Even Chance (4) 0 4 8 16 32 Possible (2) 0 2 4 8 16 Unlikely (1) 0 1 2 4 8 No Chance 0% 0 0 0 0 0 None No degree of possible harm Incident may take place but injury or illness is not likely or it Trivial will be extremely minor Mild cuts and scrapes, mild contusion, minor burns, minor Minor sprain/strain, etc. Amputation, shock, broken bones, torn ligaments/tendons, Major severe burns, head trauma, etc. Injuries result in death or could result in death if not treated Death in a reasonable time. USAP 6-Step Risk Assessment USAP 6-Step Risk Assessment 1) Goals Define work activities and outcomes. 2) Hazards Identify subjective and objective hazards. Mitigate RISK exposure. Can the probability and 3) Safety Measures consequences be decreased enough to proceed? Develop a plan, establish roles, and use clear 4) Plan communication, be prepared with a backup plan. 5) Execute Reassess throughout activity. 6) Debrief What could be improved for the next time? USAP Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at McMurdo Station o Arrival brief; receive room keys and station information. PROGRAM INFO o Meet point of contact (POC). o Find dorm room and settle in. o Retrieve bags from Building 140. o Check in with Crary Lab staff between 10 am and 5 pm for building keys and lab or office space (if not provided by POC).
    [Show full text]
  • Mt. Erebus: Mt
    8 7 Mt. Erebus Image Gallery. Image Erebus Mt. Pennycook, Jean of courtesy Photo hut. point up into the sky! the into up point and melt ice the makes steam The rock. the in Opening to an ice tower near the lower Erebus Erebus lower the near tower ice an to Opening They look like icicles that that icicles like look They cracks through sides the out comes volcano the it freezes into pillars. pillars. into freezes it of inside the from Steam hot. very is volcano moves into the cold air, air, cold the into moves the of inside the But long. year all ice and ice. When the hot steam steam hot the When ice. snow by covered is Erebus Mt. that means This forms caves made out of of out made caves forms Antarctica. near is It place. cold a is Island Ross MT. EREBUS: A SURPRISING VOLCANO SURPRISING A EREBUS: MT. VOLCANO SURPRISING A EREBUS: MT. http://beyondpenguins.nsdl.org ABOUT THE AUTHOR Jessica Fries-Gaither Issue 9: Earth’s Changing Surface Elementary Resource Specialist, (December 2008) The Ohio State University Copyright December 2008 – The Ohio State University Jessica taught at the elementary level (grades 4-6) Supported by the National and middle school (grades 5-8 math and science) Science Foundation in Memphis, TN and Anchorage, AK. Her work with MT. EREBUS: Beyond Penguins and Polar Bears involves creating Licensed Under a Creative Commons license. A SURPRISING VOLCANO and managing content for the magazine and blog. http://creativecommons.org/licenses/by-sa/3.0/ BY JESSICA FRIES-GAITHER Find this story and others at: DECEMBER 2008 http://beyondpenguins.nsdl.org/information.php?topic=stories Flesch - Kincaid RL = 3.7 13 2 60 °S ANTARCTICA like to study volcanoes, too? volcanoes, study to like about what happens deep inside it.
    [Show full text]
  • Beagle Run Farm Beagle Run Farm
    , ~ Farms & Estates Realty ~ ♣ Premier Properties ♣ Beagle Run Farm 4®©≥ ®°§≥ •¨ £≤°¶•§ •≥°• ® • ©≥ ¨ £°•§ ©®© • ¶ 7•§§© ≥ ¶©•≤ £ ©©•≥ , £°•§ © ®• ©±• "•°¨• 2 &°≤ §••¨ • ®©≥ ≥± ¶ ≥ ≤ 7©¨¨©° ≥!≤ ≥ ¨• ≤•≥©§•£• ¶•°≤•≥ " ¢•§≤ ≥ # !®≥ ° ≥°£© ≥ ≤ • $©£®• °§%°£• ®• ! ©§ •§ !•°$¶°≥ ≤ °§ ≤°§©© °¨ ¨©© °§ ≤•° ≤ ≥ &¨°≥≥©£ °≤£®©•£≤°¨ •¨• •≥ °≤• •©§• ! ® ©≥©§• °§ ¶ ®©≥ ≤•≥©§•£• 4®• •'•≤© ≤ ©≥ °®•©£°¨¨ £ ≥≤£•§ °≥ ° 7©¨¨©° ≥!≤ ≤•≤ §£© ≤•∞¨•• ©® (¨• ©≥® ) § !©£$ ≤$ )£$©®° ≥¨°• ≤ ¶ £ ∞∞•≤ ≤ ¶•§ £ ¨ •§ ¶≤ ≤£® °§ ≥ •≤©£°¨¨ ≥©© •§ ©§ ≥ °§ £®© • ≥ 4®• ©•≤© ≤ ©≥ °§ ≤•§ ©® £≥ §•≥©•§ °¨•≥ ¶ ≤ ®• ®≤•• § !≤© ¶©≤•∞¨°£•≥ ≥ ≤ ¶ •≤ ©® •®°£•§ £≤ ¨§© °§ ° ≤°§•§ $©£®• £≥ ≥©•§ ¶ ≤ ° ≤ • £ $ /•≤¨ $© ° ≥®°≤•§ § ©®© ° •¨•° +, °£≤• ≥•© ¶ °©£≤•§ ¨°≥ ! ' §≥ °§ © ° ®• •§ ¶ ° ∞≤©°• ∞°•§ §≤©• ®©≥ ≤ ∞•≤ ¶¶•≤≥ ° •'£¨≥©• £ ≤ ≥•© °§ ©≥ • ¶ ¨ ¶©• ® •≥ ©®© ®©≥ ¨°≤• ≤°£ §••¨ • 4®• •≥°• ©≥ ¨ £°•§ ©®© ®• © ≤•≥≥©• -°≤© .©§• ≥£® ¨ £ ∞¨•' °¨¨ ®≤•• ¶ ®©£® °≤• %≥ ©•≥ °° °§ ©≥ ©®© •°≥ £ • © • &®°≤¨ • 9 ≤ ¶° ©¨ °§ •≥≥ ©¨¨ ¨©• £ ¶ ≤°! ®•≤• ° "•°¨• 2 °§ ©¨¨ ≥ £ • ≤•°¨©0• ®•≤• ©≥ ¶°≤ ≤• ≤• £ ≤ ¨©© ®° £° ¢• ¶ § 1 °£≤• ¨ ≥ Farms & Estates Realty, Inc. www.farmsandestates.com 101 W. South Main Street ~ P. O. Bo 808 Wa haw, NC 28173 704 . 843 . 1107 Fact Sheet ♣ Beagle Run Farm ♣ Multiple Listing: Price: Land: ! ! "! # $ %& & ! ! ! ! $ !! ! '! $ $ '! # && !& # &&( ) # & # $ House: "% $ *C! . - ! # & ! Size: ! # Rooms: Main - . " C ! ! I C 0 12 0 3 ! .$# 0 14a .4t I# .! 2nd Floor - a . ! # ! . . 7 " ! # ! 1 ! 8#48& 0 Attic:
    [Show full text]
  • The Red Planet's Watery Past
    New observations by rovers and orbiters indicate that liquid water not only existed on Mars, it once covered large parts of the planet’s surface, perhaps for more than a billion years WATER FLOWS ACROSS the Martian surface in an artist’s rendering of how the Red Planet may have looked 2.5 billion to four billion years ago. Salt deposits along the water’s edge C REDI T appear purple in this twilight view. 62 SCIENTIFIC AMERICAN DECEMBER 2006 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. RedThe Planet’s atery W Pastast BY JIM BELL y February 2005 the Mars Exploration Rover named Spirit had already spent more than a year in Gusev Crater, a two-kilometer-deep, Connecticut-size hole in the Red Planet’s surface. Because Gusev lies at the end of an ancient, dry river valley longer than the Grand Canyon, many of us on the rover’s mission team Bhad expected Spirit to fi nd evidence that the crater had been fi lled with water billions of years ago. On the fl at plains where the craft had landed, however, the rover found neither lake deposits nor other preserved signs that water had once fl owed inside Gusev. The rover’s photographs showed only dust and sand and bone-dry volcanic lava rocks. But everything changed once Spirit reached the slopes of the Columbia Hills, about 2.6 kilometers from the landing site. (Each of the hills is named after one of the seven astronauts who died in the space shuttle Columbia disaster in 2003.) As Spirit struggled to climb the western slope of Husband Hill, its wheels dislodged rocks and dug deep C REDI T tracks in the Martian soil.
    [Show full text]
  • Flnitflrclid
    flNiTflRClID A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) A New Zealand geochemist, Dr W. F. Giggenbach, descends into the inner crater of Mt Erebus on December 23 last year in an unsuccessful attempt to take gas samples. Behind him in the lava lake of the volcano where the temperature is 1000deg Celsius. On his rucksack he carries titanium gas sampling rods. Photo by Colin Monteath VOl. 8, NO. 1 1 . Wellington, New Zealand, as a magazine. o6pt61*11061% I 979I ' . SOUTH SANDWICH Is SOUTH GEORGIA f S O U T H O R K N E Y I s x \ *#****t ■ /o Orcadas arg \ - aanae s» Novolazarevskaya ussr XJ FALKLAND Is /*Signyl.uK ,,'\ V\60-W / -'' \ Syowa japan SOUTH AMERICA /'' /^ y Borga 7 s a "Molodezhnaya A SOUTH , .a /WEDDELL T\USSR SHETLAND DRONNING MAUD LAND ENOERBY \] / Halley Bay^ ununn n mMUU / I s 'SEA uk'v? COATS Ld LAND JJ Druzhnaya ^General Belgrano arg ANTARCTIC %V USSR *» -» /\ ^ Mawson MAC ROBERTSON LANO\ '■ aust /PENINSULA,' "*■ (see map below) /Sohral arg _ ■ = Davis aust /_Siple — USA Amundsen-Scott / queen MARY LAND gMirny [ELLSWORTH u s a / ; t h u s s i " LANO K / ° V o s t o k u s s r / k . MARIE BYRD > LAND WILKES LAND Scott kOSS|nzk SEA I ,*$V /VICTORIA TERRE ' •|Py»/ LAND AOEilE ,y Leningradskaya X' USSR,''' \ 1 3 -------"';BALLENYIs ANTARCTIC PENINSULA ^ v . : 1 Teniente Matienzo arg 2 Esperanza arc 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Presidents Frei chile * ? 500 1000 Kilometres 10 Stonington I.
    [Show full text]
  • 14Yearsofdiscovery
    14 YEARS OF DISCOVERIES 14 years of discoveries 14 YEARS OF DISCOVERIES DesignedMARS to last 90 days, Opportunity survived for over a 1 Martian solar decade on Mars. Here day (Sol) we look back on how = the record-breaking 1.027 rover changed the way Earth days we see the Red Planet 2 14 years of discoveries 39 Sols 91 Sols Opportunity’s Opportunity from orbit Opportunity’s journey across Mars has objectives been closely watched and calibrated by the satellites in orbit around the Red Search for signs of past Planet. This image from NASA’s Mars ✔ Global Surveyor shows some of the liquid water tracks of the rover, the craters it was visiting, its back shell and parachute, Determine distribution along with the location of its discarded and composition of heat shield. It was taken on 26 April Martian rocks ✔ 2004 on Sol 91 from a distance of around 400 kilometres (249 miles). Discover the geological processes which formed the Martian terrain ✔ Validate measurements made by probes orbiting Mars ✔ Search for iron containing minerals that may have been formed in water ✔ Signs of past water This is a microscopic image of part of a rock called 'Last Determine the texture of Chance'. The view here is around five centimetres (two rocks and soils and what inches) across and was taken on Opportunity’s 39th created them ✔ Martian day. The texture of the rock has led scientists to believe that water was once present in the area in which Assess whether Mars’ climate it was found – the Meridiani Planum area of Mars, which was ever fit for life ✔ is close to its equator.
    [Show full text]