Tectonic Paleostress Fields and Structural Evolution of the NW-Caucasus Fold-And-Thrust Belt from Late Cretaceous to Quaternary

Total Page:16

File Type:pdf, Size:1020Kb

Tectonic Paleostress Fields and Structural Evolution of the NW-Caucasus Fold-And-Thrust Belt from Late Cretaceous to Quaternary Tectonophysics 357 (2002) 1–31 www.elsevier.com/locate/tecto Tectonic paleostress fields and structural evolution of the NW-Caucasus fold-and-thrust belt from Late Cretaceous to Quaternary Aline Saintota,*, Jacques Angelierb a Vrije Universiteit, Instituut voor Aardwetenschappen, De Boelelaan 1085, 1081HV Amsterdam, Netherlands b Tectonique, ESA. 7072, Universite´ P. et M. Curie, T 25-26, E1, case 129, 4 Place Jussieu 75252 Paris cedex 05, France Received 26 May 2000; accepted 11 January 2002 Abstract The NW-Caucasus fold-and thrust belt essentially corresponds to the inverted western Flysch Zone of the Great Caucasus Mountains, a deep basin that developed from Late Jurassic to Eocene times between the Scythian Plate to the north and the Transcaucasian terranes to the south (the Shatsky Ridge, SW of the NW-Caucasus zone). The Flysch Basin was strongly affected by compression in Late Eocene times, when the characteristic WNW trending folds and thrusts of the NW-Caucasus belt developed (some authors regard the main compressive deformation as Miocene in age). By means of remote sensing analysis, we elucidate the geometry of major structures in the belt: WNW trending south-vergent thrusts and folds, and major vertical and transverse NNE–SSW to NE–SW deep fault zones. The later structures are interpreted as ancient faults that were active during the development of the Flysch Basin. Paleostress investigations reveal seven main tectonic episodes in the evolution of the NW-Caucasus since Late Cretaceous. Combining structural interpretation, remote sensing analysis and paleostress field reconstruction, we propose a model for the structural evolution of the belt. During the Late Cretaceous–Paleocene, the western Caucasus zone was under transtensional regime with an E–W to NE–SW trending r3 that generated oblique normal movements along NNE–SSW transverse faults and WNW–ESE margins of the Flysch Basin. This tectonism could correspond to rifting related to the formation of the Eastern Black Sea Basin. At the Paleocene–Eocene boundary, a transpressional event with an E–W to NW–SE trending r1 developed and the NNE–SSW to NE–SW trending faults could have been inverted. This event could correspond to an attenuation in the Eastern Black Sea Basin formation or to the incipient accretion of the Transcaucasian terranes. During the Eocene, another E– W to NW–SE oblique extension (-transtensional event) affected the Flysch Basin that could be related to a known rifting phase in the Eastern Black Sea Basin. Strong NNE–SSW to NE–SW compression characterises Late Eocene tectonism. The fold- and-thrust belt developed at this time as a result of the direct collision of the Shatsky Ridge with the Scythian Plate. A NE–SW extension followed the Late Eocene event, related to basin development around the newly formed fold belt. A WNW–ESE oblique contraction affected the belt during the early Miocene as the result of Arabian Plate convergence with the Caucasian system. The latest inferred event is a compressional regime, with NNW–SSE trending r1 that is affecting the NW-Caucasus belt from Sarmatian times until the present. Under this oblique compression, the belt has deformed as in a dextral shear zone and the thrust surfaces have acquired lenticular shapes. This study highlights the occurrence of oblique movements in the NW-Caucasus area prior to and after the dominant Late Eocene compression. From the Late Cretaceous until the Eocene, the structural * Corresponding author. E-mail addresses: [email protected] (A. Saintot), [email protected] (J. Angelier). 0040-1951/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved. PII: S0040-1951(02)00360-8 2 A. Saintot, J. Angelier / Tectonophysics 357 (2002) 1–31 development of the NW-Caucasus was closely related to the evolution of the Eastern Black Sea Basin. From the Late Eocene until Quaternary times, it was rather related to the Arabia–Eurasia plate convergence. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Brittle tectonics; Structures; Paleostress field; NW-Caucasus; Fold-and-thrust belt; Eastern Black Sea 1. Introduction Mesozoic–Cenozoic times along the Crimea–Cauca- sus boundary (Milanovsky and Khain, 1963; Razve- Between the Black Sea domain and the East-Euro- taev, 1977; Muratov et al., 1984; Khain, 1984; pean platform, major deformation occurred during Dotduyev, 1989; Zonenshain et al., 1990; Nikishin et Fig. 1. (a) Location of the studied area. (b) Geodynamics: Late Cenozoic plate kinematics of the Black Sea–Caspian region from Vardapetyan (1980) and Zonenshain et al. (1990). (c) Structural setting from Tugolesov et al. (1985), Finetti et al. (1988) and Shreider et al. (1997). A. Saintot, J. Angelier / Tectonophysics 357 (2002) 1–31 3 al., 1998a,b). This study is focused on the NW-Cauca- structural analysis and reconstruction of stress states sus, the westernmost segment of the Great Caucasus was indispensable. Along with remote sensing analy- belt, adjacent to Crimea (Fig. 1). The timing of tectonic ses, it allowed us to depict the tectonic evolution of events that have affected the area is poorly constrained. the belt, including determination of the structural The main orogenic phase is considered to be Late expression of tectonic events. Combining remote Eocene by Milanovsky and Khain (1963), Grigor’yants sensing analyses and paleostress results thus allows et al. (1967), Milanovsky et al. (1984), Muratov et al. us to propose a new scheme for the Late Cretaceous (1984) and others, whereas it is Miocene according to and Cenozoic structural evolution of the NW-Cauca- Dotduyev (1987), Shcherba (1987, 1989, 1993), sus fold-and-thrust belt. Zonenshain et al. (1990), Kopp (1991), Kopp and Shcherba (1998), etc. Another issue that is still matter of debate is the age of the opening of the East Black Sea 2. Geological setting of NW-Caucasus Basin, close to the NW-Caucasus belt: Late Cretaceous and Paleocene according to Finetti et al. (1988), Eocene The NW-Caucasus belt is classically described as a according to Lordkipanidze (1980), and Late Paleo- wide anticlinorium. Lower and Middle Jurassic rocks cene–Eocene according to Robinson et al. (1996) and are present in its core, whereas Late Jurassic to Eocene Shreider et al. (1997). Flysch formations lie on its flanks and Maastrichtian to We aim at better constraining the Late Cretaceous Quaternary deposits form successive cuestas on its and Cenozoic tectonic evolution in the NW-Caucasus northern limb (Fig. 2a). The Triassic and Jurassic area by combining structural analysis with the paleo- history of the area is not well constrained and still a stress reconstruction method (Saintot, 2000). In the matter of debate. The extent and age of Cimmerian NW-Caucasus, brittle deformation has been well orogenic phases, in Late Triassic or Early Jurassic, recorded in the competent beds of the widespread Middle Jurassic and Late Jurassic times, as well as the Flysch formation, which is Cretaceous to early Cen- successive rifting events, are not known. Nevertheless, ozoic in age. The overlying and underlying series an angular unconformity is reported at the bottom of have also been observed in places. The inversion of Upper Jurassic (due to the intra-Callovian Cimmerian more than 2000 brittle structural data, collected at 58 orogenic phase; Nikishin et al., 1998a,b). Most of the sites in the NW-Caucasus, has allowed reconstruction NW-Caucasus (Fig. 2a) corresponds to the western part of 124 local stress states. A majority of sites revealed of the so-called Flysch Zone of the Great Caucasus. polyphase tectonics. Fault slip data, 1800, were used This ancient basin was evolving from the Late Jurassic to calculate 72 stress tensors of good quality. We show up to the Late Eocene, between the Scythian Plate and that several stress regimes prevailed at different tec- the Shatsky Ridge. This basin was filled by 6–8 km of tonic stages in the late history of the WNW–ESE flysch-type sediments (Milanovsky and Khain, 1963; trending western Caucasus Mountain belt. Lordkipanidze, 1980; Koronovsky, 1984; Gamkre- The determination of paleostress regimes is of lidze, 1986; Beloussov et al., 1988; Adamia and particular interest if their relation to the general Lordkipanidze, 1989; Zonenshain et al., 1990). structure of the mountain belt is identified. In order According to the many authors, the closure of the to determine the relation between major structures and Flysch Basin and the orogeny of the Great Caucasus paleo-tectonic regimes, we undertook a systematic belt occurred in the Late Eocene times (Shardanov and study based on remote sensing mapping. In addition Peklo, 1959; Beliaevsky et al., 1961; Milanovsky and to the compilation of available geological maps and Khain, 1963, Grigor’yants et al., 1967; Milanovsky et numerous papers on the geology of the NW-Caucasus, al., 1984; Muratov et al., 1984; Giorgobiani and Zakar- we had access to the structural pattern through a aya, 1989; Robinson et al., 1996; Lozar and Polino, detailed analysis of the Landsat Thematic Mapper 1997; Robinson, 1997; Nikishin et al., 1998a,b, 2001, imagery. Although the remote sensing analysis pro- Mikhailov et al., 1999). The resulting dominant struc- vided valuable structural information, it could not tural grain is trending WNW–ESE, expressed by many suffice to thoroughly explain the tectonic evolution major thrust planes and folds (Fig. 2a). The strati- of the area. Field study in terms of both conventional graphic units of the ancient Flysch Basin were 4 A. Saintot, J. Angelier / Tectonophysics 357 (2002) 1–31 Fig. 2. (a) Structural map of NW-Caucasus (in Giorgobiani and Zakaraya, 1989) with location of the profile (b). Ak, Akhtyr Fault; Bz, Bezeps Thrust; D, Djiguinsky Fault (or Anapa Fault); Dj, Djankhot Fault; G, Gelendjik Fault; K, Kabardinsky Fault; KP, Krasnaya Poliana Fault; M, Moldavansky Fault; Mo, Monastirsky Fault; NM, Novo-Mikhaı¨lovka Thrust; P, Pchada Fault; Pc, Pchich Thrust; PA, Pchekha-Adler Fault; S, Semigorsky Thrust; Sm, Semisamsky Thrust; T, Tougoups Fault; Ta, Tamakhinsky Fault; To, Tuapse Fault; VA, Verne-Abinsky Fault; Y, Yujni Thrust.
Recommended publications
  • Structures, Deformation Mechanisms and Tectonic Phases, Recorded In
    European Scientific Journal Jume 2019 edition Vol.15, No.18 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Structures, Deformation Mechanisms and Tectonic Phases, Recorded in Paleoproterozoic Granitoids of West African Craton, Southern Part: Example of Kan’s Complex (Central of Côte d’Ivoire) K. K. Jean Marie Pria, Laboratoire de Géologie du Socle et de Métallogénie, UFR-STRM, Université Félix Houphouët-Boigny de Cocody, Abidjan, Côte d’Ivoire Laboratoire des Géosciences et Environnement, Département de Géologie, Université Ibn Tofaïl de Kénitra, Maroc Yacouba Coulibaly, N. N’guessan Houssou, M. Ephrem Allialy, T. K. L. Dimitri Boya, Laboratoire de Géologie du Socle et de Métallogénie, UFR-STRM, Université Félix Houphouët-Boigny de Cocody, Abidjan, Côte d’Ivoire Mohamed Tayebi, Lamia Erraoui, Souad M’Rabet, Laboratoire des Géosciences et Environnement, Département de Géologie, Université Ibn Tofaïl de Kénitra, Maroc Doi: 10.19044/esj.2019.v15n18p315 URL:http://dx.doi.org/10.19044/esj.2019.v15n18p315 Abstract The granito-gneissic complex of Kan is located in the central part of the Paleoproterozoic domain of Côte d’Ivoire. It consists essentially of migmatitic and mylonitic gneisses with basic intrusions and xenoliths. This Proterozoic domain belongs to the Man Leo shield, southern part of West African craton (WAC). The present study, essentially based on a structural analysis at outcrop scale, aims to identify deformation mechanisms and tectonic phases recorded in the granito-gneissic complex of Kan. Deformation mechanisms include: (1) flattening, (2) constriction, (3) simple shear (4), rotation (5), brittle shear, and (6) extension. The Kan complex deformation occurred during four major tectonic phases named D1, D2, D3 and D4.
    [Show full text]
  • Paleostress Reconstruction of Faults Recorded in the Niedźwiedzia Cave (Sudetes): Insights Into Alpine Intraplate Tectonic of NE Bohemian Massif
    International Journal of Earth Sciences https://doi.org/10.1007/s00531-021-01994-1 ORIGINAL PAPER Paleostress reconstruction of faults recorded in the Niedźwiedzia Cave (Sudetes): insights into Alpine intraplate tectonic of NE Bohemian Massif Artur Sobczyk1 · Jacek Szczygieł2 Received: 28 December 2019 / Accepted: 16 January 2021 © The Author(s) 2021 Abstract Brittle structures identifed within the largest karstic cave of the Sudetes (the Niedźwiedzia Cave) were studied to reconstruct the paleostress driving post-Variscan tectonic activity in the NE Bohemian Massif. Individual fault population datasets, including local strike and dip of fault planes, striations, and Riedel shear, enabled us to discuss the orientation of the prin- cipal stresses tensor. The (meso) fault-slip data analysis performed both with Dihedra and an inverse method revealed two possible main opposing compressional regimes: (1) NE–SW compression with the formation of strike-slip (transpressional) faults and (2) WNW–ESE horizontal compression related to fault-block tectonics. The (older) NE-SW compression was most probably associated with the Late Cretaceous–Paleogene pan-regional basin inversion throughout Central Europe, as a reaction to ongoing African-Iberian-European convergence. Second WNW–ESE compression was active as of the Middle Miocene, at the latest, and might represent the Neogene–Quaternary tectonic regime of the NE Bohemian Massif. Exposed fault plane surfaces in a dissolution-collapse marble cave system provided insights into the Meso-Cenozoic tectonic history of the Earth’s uppermost crust in Central Europe, and were also identifed as important guiding structures controlling the origin of the Niedźwiedzia Cave and the evolution of subsequent karstic conduits during the Late Cenozoic.
    [Show full text]
  • Chapter 5 the Pre-Andean Phases of Construction of the Southern Andes Basement in Neoproterozoic-Paleozoic Times
    133 Chapter 5 The Pre-Andean phases of construction of the Southern Andes basement in Neoproterozoic-Paleozoic times Nemesio Heredia; Joaquín García-Sansegundo; Gloria Gallastegui; Pedro Farias; Raúl E. Giacosa; Fernando D. Hongn; José María Tubía; Juan Luis Alonso; Pere Busquets; Reynaldo Charrier; Pilar Clariana; Ferrán Colombo; Andrés Cuesta; Jorge Gallastegui; Laura B. Giambiagi; Luis González-Menéndez; Carlos O. Limarino; Fidel Martín-González; David Pedreira; Luis Quintana; Luis Roberto Rodríguez- Fernández; Álvaro Rubio-Ordóñez; Raúl E. Seggiaro; Samanta Serra-Varela; Luis A. Spalletti; Raúl Cardó; Victor A. Ramos Abstract During the late Neoproterozoic and Paleozoic times, the Southern Andes of Argentina and Chile (21º-55º S) formed part of the southwestern margin of Gondwana. During this period of time, a set of continental fragments of variable extent and allochtony was successively accreted to that margin, resulting in six Paleozoic orogenies of different temporal and spatial extension: Pampean (Ediacaran-early Cambrian), Famatinian (Middle Ordovician-Silurian), Ocloyic (Middle Ordovician-Devonian), Chanic (Middle Devonian-early Carboniferous), Gondwanan (Middle Devonian-middle Permian) and Tabarin (late Permian-Triassic). All these orogenies culminate with collisional events, with the exception of the Tabarin and a part of the Gondwanan orogenies that are subduction-related. Keywords Paleozoic, Southern Andes, Pampean orogen, Ocloyic orogen, Famatinian orogen, Chanic orogen, Gondwanan orogen, Tabarin orogen. 133 134 1 Introduction In the southern part of the Andean Cordillera (21º-55º S, Fig. 1A) and nearby areas, there are Neoproterozoic (Ediacaran)-Paleozoic basement relicts of variable extension. This basement has been involved in orogenic events prior to the Andean orogeny, which is related to the current configuration of the Andean chain (active since the Cretaceous).
    [Show full text]
  • Numerical Paleostress Analysis – the Limits of Automation
    Trabajos de Geología, Universidad de Oviedo, 29 : 399-403 (2009) Numerical paleostress analysis – the limits of automation M. KERNSTOCKOVA1* AND R. MELICHAR1 1Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic. *e-mail: [email protected] Abstract: The purpose of this paper is to highlight the main problematic questions limiting the automation of numerical paleostress analysis of heterogeneous fault-slip data sets. It focusses on prob- lems concerning the creation of spurious solutions, the separation of data corresponding to several tec- tonic phases, and the precision of measurement. It offers some ways of dealing with these problems and trying to control their influence on the accuracy of solutions. Keywords: numerical paleostress analysis, fault-slip data, principal stresses, reduce stress tensor. The stress field reconstruction of deformed rocks is a the reduced stress tensor (Angelier et al., 1982) for a key to understanding tectonic events in studied areas. four-element fault-slip group. The reduced stress It is usually based on an analysis of fault-slip data sets. tensor is represented by three directions of principal σ σ σ σ ≥ σ ≥ σ Fault-slip data (e.g. orientation of faults, orientation stresses 1, 2, 3 ( 1 2 3) and its relative value of striation, sense of slip) code information about the is expressed by a shape parameter (e.g. Lode’s ratio μ stress state which causes these brittle structures. L). Otherwise, the stress ellipsoid represents the Changes of stress field can cause new fault formation existing stress state constituted by the nine-dimen- or the reactivation of older ones.
    [Show full text]
  • Structural Geology Analysis in a Disaster-Prone of Slope Failure
    E-ISSN : 2541-5794 P-ISSN : 2503-216X Journal of Geoscience, Engineering, Environment, and Technology Vol 02 No 04 2017 Structural Geology Analysis In A Disaster-Prone Of Slope Failure, Merangin Village, Kuok District, Kampar Regency, Riau Province Yuniarti Yuskar1, Dewandra Bagus Eka Putra1, Adi Suryadi1, Tiggi Choanji1, Catur Cahyaningsih1 1 Department of Geological Engineering, Universitas Islam Riau, Jl. Kaharuddin Nasution No 113 Pekanbaru, 28284, Indonesia. * Corresponding author : [email protected] Tel.: .:+62-821-6935-4941 Received: Sept 02, 2017. Revised : 1 Nov 2017, Accepted: Nov 15, 2017, Published: 1 Dec 2017 DOI : 10.24273/jgeet.2017.2.4.691 Abstract The geological disaster of landslide has occurred in Merangin Village, Kuok Subdistrict, Kampar Regency, Riau Province which located exactly in the national road of Riau - West Sumatra at Km 91. Based on the occurrence of landslide, this research was conducted to study geological structure and engineering geology to determine the main factors causing landslides. Based on measurement of the structural geology found on research area, there were fractures, faults and fold rocks which having trend of stress N 2380 E, plunge 60, trending NE-SW direction. Several faults that found was normal faults directing N 2000 E with dip 200 trending from northeast-southwest and reverse fault impinging N 550 E with dip 550, pitch 200 trending to the northeast. Fold structures showing azimuth N 2010 E trending southeast-northwest. From geological engineering analysis, the results of scan line at 6 sites that have RQD value ranges 9.4% - 78.7 % with discontinuity spacing 4 - 20 cm.
    [Show full text]
  • Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco)
    geosciences Article Tectono-Sedimentary Cenozoic Evolution of the El Habt and Ouezzane Tectonic Units (External Rif, Morocco) Manuel Martín-Martín 1,* , Francesco Guerrera 2 , Rachid Hlila 3, Alí Maaté 3, Soufian Maaté 4, Mario Tramontana 5 , Francisco Serrano 6, Juan Carlos Cañaveras 1, Francisco Javier Alcalá 7,8 and Douglas Paton 9 1 Departamento de Ciencias de la Tierra y Medio Ambiente, University of Alicante, 03080 Alicante, Spain; [email protected] 2 Ex-Dipartimento di Scienze della Terra, della Vita e dell’Ambiente (DiSTeVA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] 3 Laboratoire de Géologie de l’Environnement et Ressources Naturelles, Département de Géologie, Université Abdelmalek Essaâdi, Tétouan 93002, Morocco; [email protected] (R.H.); [email protected] (A.M.) 4 Faculté des Sciences et Techniques Errachidia, Université Moulay Ismail Département de Géosciences, Errachidia 52000, Morocco; soufi[email protected] 5 Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy; [email protected] 6 Departamento de Geología y Ecología, University of Málaga, 29016 Málaga, Spain; [email protected] 7 Instituto Geológico y Minero de España, 28003 Madrid, Spain; [email protected] 8 Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, 7500138 Santiago, Chile 9 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; [email protected] * Correspondence: [email protected] Received: 12 November 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: An interdisciplinary study based on lithostratigraphic, biostratigraphic, petrographic and mineralogical analyses has been performed in order to establish the Cenozoic tectono-sedimentary evolution of the El Habt and Ouezzane Tectonic Units (External Intrarif Subzone, External Rif, Morocco).
    [Show full text]
  • Active Folding and Blind Thrust Faulting Induced by Basin Inversion Processes, Inner California Borderlands, in K
    Rivero, Carlos, and John H. Shaw, 2011, Active folding and blind thrust faulting induced by basin inversion processes, inner California borderlands, in K. McClay, J. Shaw, and J. Suppe, eds., Thrust fault-related folding: AAPG Memoir 94, 9 p. 187 – 214. Active Folding and Blind Thrust Faulting Induced by Basin Inversion Processes, Inner California Borderlands Carlos Rivero1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, U.S.A. John H. Shaw Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, U.S.A. ABSTRACT The present bathymetry, basin geometries, and spatial earthquake distribution in the inner California borderlands reflect complex basin inversion processes that reactivated two low- angle Miocene extensional detachments as blind thrust faults during the Pliocene to Holocene. The Oceanside and the Thirtymile Bank detachments comprise the inner California blind thrust system. These low-angle detachments originated during Neogene crustal extension that opened the inner California borderlands, creating a rift system that controlled the deposition of early to late Miocene sedimentary units and the exhumation of the metamorphic Catalina schist. During the Pliocene, a transpressional regime induced by oblique convergence between the Pacific and the North American plates reactivated the Oceanside and the Thirtymile Bank detachments as blind thrust faults. This reactivation generated regional structural wedges cored by faulted basement blocks that inverted the sedimentary basins in the hanging wall of the Miocene extensional detachments and induced contractional fold trends along the coastal plain of Orange and San Diego counties. Favorably oriented high-angle normal faults were also reactivated, creating zones of oblique and strike-slip faulting and folding such as the offshore segments of the Rose Canyon, San Diego, and the Newport-Inglewood fault zones.
    [Show full text]
  • Reservoir Characterization of Triassic and Jurassic Sandstones of Snorre Field, the Northern North Sea
    Reservoir Characterization of Triassic and Jurassic sandstones of Snorre Field, the northern North Sea Owais Hameed Master Thesis, Autumn 2016 Reservoir Characterization of Triassic and Jurassic sandstones of Snorre Field, the northern North Sea Owais Hameed Thesis submitted for degree of Master in Geology 60 credits Department of Mathematics and Natural Science UNIVERSITY OF OSLO December / 2016 © Owais Hameed, 2016 Tutor(s): Nazmul Haque Mondol (UiO) This work is published digitally through DUO – Digital Utgivelser ved UiO http://www.duo.uio.no It is catalogued in BIBSYS (http://www.bibsys.no/English) All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Preface This thesis is submitted to the Department of Geosciences, University of Oslo (UiO) in candidacy of M.Sc. degree in Geology. The research has been performed at Department of Geosciences, University of Oslo during the period of January 2016 to December 2016 under supervision of Dr. Nazmul Haque Mondol, Associate Professor, Department of Geosciences, UiO. i ii Acknowledgement I would like to express my gratitude to my supervisor Dr. Nazmul Haque Mondol, Associate Professor, Department of Geosciences, University of Oslo, for giving me the opportunity to work under his supervision and learn from his immense knowledge and experience. His guidance, patience and encouragement throughout the study helped me to complete this thesis. I am grateful to PhD candidate Mohammad Nooraipour and Irfan Baig for their precious time and help. Special thanks to Manzar Fawad and Mohammad Koochak Zadeh for their help and time when it was needed.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates Permalink https://escholarship.org/uc/item/4wm3t7sk Authors Matonti, C Guglielmi, Y Viseur, S et al. Publication Date 2017-05-09 DOI 10.1016/j.tecto.2017.03.019 Peer reviewed eScholarship.org Powered by the California Digital Library University of California P-wave velocity anisotropy related to sealed fractures reactivation tracing the structural diagenesis in carbonates Author links open overlay panel C.Matonti ab Y.Guglielmi ac S.Viseur a S.Garambois d L.Marié a Show more https://doi.org/10.1016/j.tecto.2017.03.019 Get rights and content Highlights • Vp measured on a meter scale block affected by reactivated and non-reactivated fractures • Fracture reactivation decreases Vp and leads to dip anisotropy of about 10%. • It is explained by the diagenetic evolution of fracture infilling material. • Karstification is only a second-order cause, amplifying pre-existing anisotropy. Abstract Fracture properties are important in carbonate reservoir characterization, as they are responsible for a large part of the fluid transfer properties at all scales. It is especially true in tight rocks where the matrix transfer properties only slightly contribute to the fluid flow. Open fractures are known to strongly affect seismic velocities, amplitudes and anisotropy. Here, we explore the impact of fracture evolution on the geophysical signature and directional Vpanisotropy of fractured carbonates through diagenesis. For that purpose, we studied a meter-scale, parallelepiped quarry block of limestone using a detailed structural and diagenetic characterization, and numerous Vp measurements.
    [Show full text]
  • Paleostress Fields and 3-D Structure of Poliphase Shear Zones in the Transition Craton-Orogenic Belt: Examples from the Neoproterozoic of Southeastern Bahia, Brazil
    Revista Brasileira de Geociências 30(1):153-156, março de 2000 PALEOSTRESS FIELDS AND 3-D STRUCTURE OF POLIPHASE SHEAR ZONES IN THE TRANSITION CRATON-OROGENIC BELT: EXAMPLES FROM THE NEOPROTEROZOIC OF SOUTHEASTERN BAHIA, BRAZIL LUIZ CÉSAR CORRÊA-GOMES1, CARLOS ROBERTO SOUZA FILHO2, ELSON PAIVA OLIVEIRA2 ABSTRACT The IICSZ is a N45°-trending, 30km wide, intracratonic shear zone, extending for some 150km through the SSE portion of the Bahia State. The IICSZ is closely related to dykes and syenites of the Alkaline Igneous Suite of Southern Bahia and, to the Southwest, it is interrupted by the N140°-trending, Potiraguá Shear Zone (PSZ), that establishes the tectonic limit of the Neoproterozoic Araçuaí Fold Belt and the Archaean-Proterozoic São Francisco Craton. The PSZ dips to SW and the IICSZ to NW, though the latter swaps northeastwards into a symmetric, positive, flower structure. A paleostress analysis based on the orientation of thousands of fault planes and fractures found in dykes and host rocks, coupled with the analysis of several kinematic indicators suggest that both shear zones evolved during a N-S compression and were later, perhaps progressively, reactivated by a E-W compressional tectonic event. Paleostress fields in both the IICSZ and PSZ were controlled by the orientation of the far-field stress, disturbances in field stress around re-activated shear zones, 3D-geometry of shear zones, tension concentration (‘channeling’) along shear zones, position of secondary faults and fractures, and orientation of shear zones, in relation to both the limit of the Araçuaí Fold Belt and the São Francisco Craton, and the site of intersection between the IICSZ and the PSZ (where the tension vectors converged to).
    [Show full text]
  • Reservoir Characterization of Jurassic Sandstones of the Johan Sverdrup Field, Central North Sea
    Reservoir Characterization of Jurassic Sandstones of the Johan Sverdrup Field, Central North Sea Hans-Martin Kaspersen Master Thesis Geology 60 credits Department of Geosciences The Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO 01/12 /2016 Reservoir Characterization of Jurassic Sandstones of the Johan Sverdrup Field, Central North Sea Hans-Martin Kaspersen Thesis for master degree in Geology December 2016 Supervisor: Associate Professor, Nazmul Haque Mondol © Hans-Martin Kaspersen 2016 Reservoir Characterization of Jurassic Sandstones of Johan Sverdrup Field, Central North Sea Hans-Martin Kaspersen http://www.duo.uio.no/ Printed: Reprosentralen, Universitetet i Oslo Preface This thesis is submitted to the Department of Geoscience, University of Oslo (UiO), in candidacy of the M.Sc. in Geology. The research has been performed at the Department of Geosciences, University of Oslo, and at Lundin Norway at Lysaker (Bærum, Norway) during the period of January 2016 to November 2016 under the supervison of Nazmul Haque Mondol, Associate Professor, Department of Geosciences, University of Oslo, Norway. I II Acknowledgment First of all I would like to thank my supervisor, Associate Professor, Nazmul Haque Mondol for giving me the opportunity to work on this project. His guidance and encouragement have been very helpful for me to accomplish the goals set for this study. I am also grateful to Lundin Norway for giving me the opportunity to write parts of my thesis at their office at Lysaker. The input from them have helped to understand some of the issues regarding the reservoir, and the working environment made it a nice place to write the last sections of this thesis.
    [Show full text]
  • Cretaceous Tectonics in the Apuseni Mountains (Romania)
    Int J Earth Sci (Geol Rundsch) DOI 10.1007/s00531-016-1335-y ORIGINAL PAPER From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania) Martin Kaspar Reiser1 · Ralf Schuster2 · Richard Spikings3 · Peter Tropper4 · Bernhard Fügenschuh1 Received: 18 December 2014 / Accepted: 22 April 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract New Ar–Ar muscovite and Rb–Sr biotite age and structural data from the Bihor Unit (Tisza Mega-Unit) data in combination with structural analyses from the allowed to establish E-directed differential exhumation dur- Apuseni Mountains provide new constraints on the tim- ing Early–Late Cretaceous times (D3.1). Brittle detachment ing and kinematics of deformation during the Cretaceous. faulting (D3.2) and the deposition of syn-extensional sedi- Time–temperature paths from the structurally highest base- ments indicate general uplift and partial surface exposure ment nappe of the Apuseni Mountains in combination with during the Late Cretaceous. Brittle conditions persist dur- sedimentary data indicate exhumation and a position close ing the latest Cretaceous compressional overprint (D4). to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar–Ar musco- Keywords Geochronology · Cretaceous · Tectonics · vite ages from structurally lower parts in the Biharia Nappe Exhumation · Tisza · Dacia · Apuseni Mountains · Ar–Ar · System (Dacia Mega-Unit) show cooling from medium- Rb–Sr grade conditions. NE–SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during Introduction D2. An Albian to Turonian age (110–90 Ma) is proposed for the main deformation (D2) that formed the present-day The Alpine–Carpathian–Dinaride orogenic system was geometry of the nappe stack and led to a pervasive retro- the focus of several recent studies, which resulted in grade greenschist-facies overprint.
    [Show full text]