The Blake River Group, Abitibi Greenstone Belt
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volcanology and Mineral Deposits
THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). -
Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D
ARCTIC VOL. 54, NO. 2 (JUNE 2001) P. 157– 161 Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D. ROBINSON1 (Received 30 May 2000; accepted in revised form 25 September 2000) ABSTRACT. Peatlands are a particularly good medium for trapping and preserving tephra, as their surfaces are wet and well vegetated. The extent of tephra-depositing events can often be greatly expanded through the observation of ash in peatlands. This paper uses the presence of the White River tephra layer (1200 B.P.) in peatlands to extend the known distribution of this late Holocene tephra into the Mackenzie Valley, northwestern Canada. The ash has been noted almost to the western shore of Great Slave Lake, over 1300 km from the source in southeastern Alaska. This new distribution covers approximately 540000 km2 with a tephra volume of 27 km3. The short time span and constrained timing of volcanic ash deposition, combined with unique physical and chemical parameters, make tephra layers ideal for use as chronostratigraphic markers. Key words: chronostratigraphy, Mackenzie Valley, peatlands, White River ash RÉSUMÉ. Les tourbières constituent un milieu particulièrement approprié au piégeage et à la conservation de téphra, en raison de l’humidité et de l’abondance de végétation qui règnent en surface. L’observation des cendres contenues dans les tourbières permet souvent d’élargir notablement les limites spatiales connues des épisodes de dépôts de téphra. Cet article recourt à la présence de la couche de téphra de la rivière White (1200 BP) dans les tourbières pour agrandir la distribution connue de ce téphra datant de l’Holocène supérieur dans la vallée du Mackenzie, située dans le Nord-Ouest canadien. -
AN OVERVIEW of the GEOLOGY of the GREAT LAKES BASIN by Theodore J
AN OVERVIEW OF THE GEOLOGY OF THE GREAT LAKES BASIN by Theodore J. Bornhorst 2016 This document may be cited as: Bornhorst, T. J., 2016, An overview of the geology of the Great Lakes basin: A. E. Seaman Mineral Museum, Web Publication 1, 8p. This is version 1 of A. E. Seaman Mineral Museum Web Publication 1 which was only internally reviewed for technical accuracy. The Great Lakes Basin The Great Lakes basin, as defined by watersheds that drain into the Great Lakes (Figure 1), includes about 85 % of North America’s and 20 % of the world’s surface fresh water, a total of about 5,500 cubic miles (23,000 cubic km) of water (1). The basin covers about 94,000 square miles (240,000 square km) including about 10 % of the U.S. population and 30 % of the Canadian population (1). Lake Michigan is the only Great Lake entirely within the United States. The State of Michigan lies at the heart of the Great Lakes basin. Together the Great Lakes are the single largest surface fresh water body on Earth and have an important physical and cultural role in North America. Figure 1: The Great Lakes states and Canadian Provinces and the Great Lakes watershed (brown) (after 1). 1 Precambrian Bedrock Geology The bedrock geology of the Great Lakes basin can be subdivided into rocks of Precambrian and Phanerozoic (Figure 2). The Precambrian of the Great Lakes basin is the result of three major episodes with each followed by a long period of erosion (2, 3). Figure 2: Generalized Precambrian bedrock geologic map of the Great Lakes basin. -
Source to Surface Model of Monogenetic Volcanism: a Critical Review
Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres. -
Evolution of the Western Avalon Zone and Related Epithermal Systems
Open File NFLD/3318 GEOLOGICAL ASSOCIATION OF CANADA NEWFOUNDLAND AND LABRADOR SECTION FALL FIELD TRIP FOR 2013 (September 27 to September 29) EVOLUTION OF THE WESTERN AVALON ZONE AND RELATED EPITHERMAL SYSTEMS Field Trip Guide and Background Material Greg Sparkes Geological Survey of Newfoundland and Labrador Department of Natural Resources PO Box 8700 St. John’s, NL, A1B 4J6 Canada September, 2013 GAC Newfoundland and Labrador Section – 2013 Fall Field Trip 2 Table of Contents SAFETY INFORMATION .......................................................................................................................... 4 General Information .................................................................................................................................. 4 Specific Hazards ....................................................................................................................................... 4 INTRODUCTION ........................................................................................................................................ 6 Regional Geology of the Western Avalon Zone ....................................................................................... 7 Epithermal-Style Mineralization: a summary ........................................................................................... 8 Trip Itinerary ........................................................................................................................................... 10 DAY ONE FIELD TRIP STOPS ............................................................................................................... -
Geology Map of Newfoundland
LEGEND POST-ORDOVICIAN OVERLAP SEQUENCES POST-ORDOVICIAN INTRUSIVE ROCKS Carboniferous (Viséan to Westphalian) Mesozoic Fluviatile and lacustrine, siliciclastic and minor carbonate rocks; intercalated marine, Gabbro and diabase siliciclastic, carbonate and evaporitic rocks; minor coal beds and mafic volcanic flows Devonian and Carboniferous Devonian and Carboniferous (Tournaisian) Granite and high silica granite (sensu stricto), and other granitoid intrusions Fluviatile and lacustrine sandstone, shale, conglomerate and minor carbonate rocks that are posttectonic relative to mid-Paleozoic orogenies Fluviatile and lacustrine, siliciclastic and carbonate rocks; subaerial, bimodal Silurian and Devonian volcanic rocks; may include some Late Silurian rocks Gabbro and diorite intrusions, including minor ultramafic phases Silurian and Devonian Posttectonic gabbro-syenite-granite-peralkaline granite suites and minor PRINCIPAL Shallow marine sandstone, conglomerate, limey shale and thin-bedded limestone unseparated volcanic rocks (northwest of Red Indian Line); granitoid suites, varying from pretectonic to syntectonic, relative to mid-Paleozoic orogenies (southeast of TECTONIC DIVISIONS Silurian Red Indian Line) TACONIAN Bimodal to mainly felsic subaerial volcanic rocks; includes unseparated ALLOCHTHON sedimentary rocks of mainly fluviatile and lacustrine facies GANDER ZONE Stratified rocks Shallow marine and non-marine siliciclastic sedimentary rocks, including Cambrian(?) and Ordovician 0 150 sandstone, shale and conglomerate Quartzite, psammite, -
Bailey-1976.Pdf
VOL. 81, NO. 5 JOURNAL OF GEOPHYSICAL RESEARCH FEBRUARY 10, 1976 Volcanism, Structure,and Geochronologyof Long Valley Caldera, Mono County, California RoY A. BAILEY U.S. GeologicalSurvey, Reston, Virginia 22092 G. BRENT DALRYMPLE AND MARVIN A. LANPHERE U.S. GeologicalSurvey, Menlo Park, California 94025 Long Valley caldera, a 17- by 32-km elliptical depressionon the east front of the Sierra Nevada, formed 0.7 m.y. ago during eruption of the Bishoptuff. Subsequentintracaldera volcanism included eruption of (1) aphyric rhyolite 0.68-0.64 m.y. ago during resurgentdoming of the caldera floor, (2) porphyritic hornblende-biotiterhyolite from centersperipheral to the resurgentdome at 0.5, 0.3, and 0.1 m.y. ago, and (3) porphyritic hornblende-biotiterhyodacite from outer ring fractures0.2 m.y. ago to 50,000 yr ago, a sequencethat apparently records progressivecrystallization of a subjacentchemically zoned magma chamber. Holocene rhyolitic and phreatic eruptions suggestthat residual magma was present in the chamber as recentlyas 450 yr ago. Intracaldera hydrothermalactivity beganat least0.3 m.y. ago and was widespreadin the caldera moat; it has sincedeclined due to self-sealingof near-surfacecaldera sediments by zeolitization, argillization, and silicificationand has becomelocalized on recentlyreactivated north- west-trendingSierra Nevada frontal faults that tap hot water at depth. INTRODUCTION concentrates were treated with a dilute HF solution to remove small bits of attached glassand fragments of other mineral In the westernUnited States,only three calderasare known grains. Obsidian used for dating was totally unhydrated and to be large enoughand young enoughto possiblystill contain not devitrified. Small blocks sawed from many of the hand residual magma in their chambers:the Vailes caldera (•1.1 specimenswere used for dating. -
How Polygenetic Are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes
Chapter 13 How Polygenetic are Monogenetic Volcanoes: Case Studies of Some Complex Maar‐Diatreme Volcanoes Boris Chako Tchamabé, Gabor Kereszturi, Karoly Németh and Gerardo Carrasco‐Núñez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/63486 Abstract The increasing number of field investigations and various controlled benchtop and large‐ scale experiments have permitted the evaluation of a large number of processes involved in the formation of maar‐diatreme volcanoes, the second most common type of small‐ volume subaerial volcanoes on Earth. A maar‐diatreme volcano is recognized by a volcanic crater that is cut into country rocks and surrounded by a low‐height ejecta rim com‐ posed of pyroclastic deposits of few meters to up to 200 m thick above the syn‐eruptive surface level. The craters vary from 0.1 km to up to 5 km wide and vary in depth from a few dozen meters to up to 300 m deep. Their irregular morphology reflects the simple or complex volcanic and cratering processes involved in their formation. The simplicity or complexity of the crater or the entire maar itself is usually observed in the stratigraphy of the surrounding ejecta rings. The latter are composed of sequences of successive alternating and contrastingly bedded phreatomagmatic‐derived dilute pyroclastic density currents (PDC) and fallout depositions, with occasional interbedded Strombolian‐derived spatter materials or scoria fall units, exemplifying the changes in the eruptive styles during the formation of the volcano. The entire stratigraphic sequence might be preserved as a single eruptive package (small or very thick) in which there is no stratigraphic gap or signifi‐ cant discordance indicative of a potential break during the eruption. -
Chemical and Isotopic Studies of Monogenetic Volcanic Fields: Implications for Petrogenesis and Mantle Source Heterogeneity
MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Christine Rasoazanamparany Candidate for the Degree DOCTOR OF PHILOSOPHY ______________________________________ Elisabeth Widom, Director ______________________________________ William K. Hart, Reader ______________________________________ Mike R. Brudzinski, Reader ______________________________________ Marie-Noelle Guilbaud, Reader ______________________________________ Hong Wang, Graduate School Representative ABSTRACT CHEMICAL AND ISOTOPIC STUDIES OF MONOGENETIC VOLCANIC FIELDS: IMPLICATIONS FOR PETROGENESIS AND MANTLE SOURCE HETEROGENEITY by Christine Rasoazanamparany The primary goal of this dissertation was to investigate the petrogenetic processes operating in young, monogenetic volcanic systems in diverse tectonic settings, through detailed field studies, elemental analysis, and Sr-Nd-Pb-Hf-Os-O isotopic compositions. The targeted study areas include the Lunar Crater Volcanic Field, Nevada, an area of relatively recent volcanism within the Basin and Range province; and the Michoacán and Sierra Chichinautzin Volcanic Fields in the Trans-Mexican Volcanic Belt, which are linked to modern subduction. In these studies, key questions include (1) the role of crustal assimilation vs. mantle source enrichment in producing chemical and isotopic heterogeneity in the eruptive products, (2) the origin of the mantle heterogeneity, and (3) the cause of spatial-temporal variability in the sources of magmatism. In all three studies it was shown that there is significant compositional variability within individual volcanoes and/or across the volcanic field that cannot be attributed to assimilation of crust during magmatic differentiation, but instead is attributed to mantle source heterogeneity. In the first study, which focused on the Lunar Crater Volcanic Field, it was further shown that the mantle heterogeneity is formed by ancient crustal recycling plus contribution from hydrous fluid related to subsequent subduction. -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Response of Mud Volcanoes to Earthquakes: Role of Static Strains and Frequency-Dependence of Ground Motion
IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 1P2_2B-O1 Room A3 Date/Time: July 21 17:00-17:15 Response of mud volcanoes to earthquakes: role of static strains and frequency-dependence of ground motion Michael Manga1, Maxwell Rudolph2, Marco Bonini3 1University of California, Berkeley, USA, 2University of Colorado, Boulder, USA, 3Consiglio Nazionale delle Ricerche, Florence, Italy E-mail: [email protected] Distant earthquakes can trigger the eruption of mud volcanoes. We report observations of the response of the Davis-Schrimpf, California, mud volcanoes to 2 earthquakes and non-response to 4 other earthquakes. We find that eruptions are triggered by dynamic stresses and that the mud volcanoes are more sensitive to long period seismic waves than short period waves with the same amplitude. These observations are consistent with models in which fluid mobility is enhanced by dislodging bubbles by the time-varying flows produced by seismic waves. In the Northern Apennines, Italy, we document responses and non-responses to the May-June 2012 Emilia seismic sequence. Here we find that discharge only increases where dikes under the vents are unclamped by the static stresses produced by the earthquakes. Mud volcanoes can thus respond to static stress changes (if feeder dikes are unclamped) and dynamic stresses produced by seismic waves (possibly by mobilizing bubbles). ©IAVCEI 2013 Scientific Assembly. All rights reserved. 290 IAVCEI -
Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019)
remote sensing Technical Note The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019) Prospero De Martino 1,2,* , Mario Dolce 1, Giuseppe Brandi 1, Giovanni Scarpato 1 and Umberto Tammaro 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, via Diocleziano 328, 80124 Napoli, Italy; [email protected] (M.D.); [email protected] (G.B.); [email protected] (G.S.); [email protected] (U.T.) 2 Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, via Diocleziano 328, 80124 Napoli, Italy * Correspondence: [email protected] Abstract: The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical exam- ple of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases (bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005 to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera Citation: De Martino, P.; Dolce, M.; unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia vol- Brandi, G.; Scarpato, G.; Tammaro, U. canoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed The Ground Deformation History of the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area.