Were Pterosaur Ancestors Bipedal Or Quadrupedal?: Morphometric, Functional, and Phylogenetic Considerations 21

Total Page:16

File Type:pdf, Size:1020Kb

Were Pterosaur Ancestors Bipedal Or Quadrupedal?: Morphometric, Functional, and Phylogenetic Considerations 21 Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W. A. KELLNER Review of the pterodactyloid pterosaur Coloborhynchus 219 JUNCHANG LÜ, LI XU & QIANG JI Restudy of Liaoxipterus (Istiodactylidea: Pterosauria), with comments on the Chinese istiodactylid pterosaurs 229 DAVID M. MARTILL First pterosaur remains from the Exu Formation (Cretaceous) of the Araripe Basin, Brazil 243 ERIC BUFFETAUT Late Cretaceous pterosaurs from France: a review 249 Zitteliana B 28 255 Seiten München, 31.12.2008 ISSN 1612-4138 Editors-in-Chief/Herausgeber: Michael Krings, Gert Wörheide Production and Layout/Bildbearbeitung und Layout: Martine Focke Bayerische Staatssammlung für Paläontologie und Geologie Editorial Board A. Altenbach, München B.J. Axsmith, Mobile, AL F.T. Fürsich, Erlangen K. Heißig, München H. Kerp, Münster J. Kriwet, Stuttgart J.H. Lipps, Berkeley, CA T. Litt, Bonn A. Nützel, München O.W.M. Rauhut, München B. Reichenbacher, München J.W. Schopf, Los Angeles, CA G. Schweigert, Stuttgart F. Steininger, Eggenburg Richard-Wagner-Str. 10, D-80333 München, Deutschland http://www.palmuc.de/zitteliana email: [email protected] Für den Inhalt der Arbeiten sind die Autoren allein ver ant wort lich. Authors are solely responsible for the contents of their articles. Copyright © 2008 Bayerische Staassammlung für Pa lä on to lo gie und Geologie, München Die in der Zitteliana veröffentlichten Arbeiten sind urheberrechtlich geschützt. Nachdruck, Vervielfältigungen auf photomechanischem, elektronischem oder anderem Wege sowie die Anfertigung von Übersetzungen oder die Nut zung in Vorträgen, für Funk und Fernsehen oder im Internet bleiben – auch auszugsweise – vorbehalten und bedürfen der schriftlichen Ge neh mi gung durch die Bayerische Staatssammlung für Paläontologie und Geologie, München. ISSN 1612-4138 Druck: Gebr. Geiselberger GmbH, Altötting Cover Illustration: Modell eines Rhamphorhynchus aus dem Oberjura von Eichstätt. Entwurf: P. Wellnhofer, Modell: R. Liebreich, Foto und Collage: M. Schellenberger, L. Geißler, BSPG München. Umschlagbild: Reconstitution of a Rhamphorhynchus from the Upper Jurassic of Eichstätt, Bavaria. Concept: P. Wellnhofer; design: R. Liebreich; photograph and collage: M. Schellenberger, L. Geißler, BSPG Munich. 21 Zitteliana B28 21 - 33 4 Figs, 4 Tabs München, 31.12.2008 ISSN 1612 - 4138 Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations By Kevin Padian* Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, U.S.A. Manuscript received September 4, 2007; revised manuscript accepted February 27, 2008. Abstract Zusammenfassung Whereas some phylogenetic analyses have suggested that Obwohl manche Phylogenetische Analysen andeuten, pterosaurs evolved from basal archosauromorphs, most dass sich die Flugsaurier aus den basalen Archosauromorpha analyses have concluded that they are basal ornithodirans, entwickelt haben kommen die meisten Untersuchungen zu the sister group to dinosauromorphs. Independently, for dem Schluss, dass es sich um basale Ornithodira, eine Schwes- over a century it has been debated whether their typical tergruppe der Dinosauromorpha, handelt. Davon unabhängig mode of terrestrial progression was bipedal or quadrupedal. wird seit mehr als einem Jahrhundert darüber diskutiert In view of the fact that at least some pterodactyloid ptero- ob sie sich terrestrisch überwiegend biped oder quadruped saurs are now known to have made quadrupedal tracks, the fortbewegten. Da man heute weiß dass manche pterodactyle question persists whether pterosaurs evolved from bipedal Flugsaurier quadrupede Spuren hinterließen, bleibt die Frage or quadrupedal ancestors. Phylogenetic analyses suggest bestehen ob sie sich aus bipeden oder quadrupeden Vorfahren ambiguous polarity when outgroups are used to reconstruct entwickelt haben. Phylogenetische Analysen bieten keine ein- the ancestral state: basal archosauromorphs were presumably deutigen Ergebnisse wenn Außengruppen zur Rekonstruktion quadrupedal, whereas basal ornithodirans were presumably des Ahnenstatus miteinbezogen werden: basale Archosau- bipedal. Morphometric comparisons, however, suggest romorpha waren vermutlich quadruped, basale Ornithodira that basal pterosauromorphs were bipedal; that compared dagegen biped. Morphometrische Vergleiche deuten darauf to their pseudosuchian outgroups their hindlimbs became hin dass basale Flugsaurier biped waren. Demzufolge verlän- elongated relative to the trunk length, and the forelimbs gerten sich im Gegensatz zur Außengruppe der Pseudosuchia later lengthened as they assumed a role in aerial locomotion. die Hinterbeine relativ zur Schwanzlänge. Die Vorderbeine The humerus became elongated but the forearm increased verlängern sich vermutlich später für die Fortbewegung in its length more rapidly so that it exceeded the humerus in der Luft. Der Humerus wird verlängert, der Unterarm jedoch length and was usually one of the longest wing elements in verlängert sich schneller so dass er den Humerus an Länge non-pterodactyloids. Functional and ichnological evidence übertrifft und zum längsten Element im Flügel der nicht-pte- confi rms that the stance was erect and the gait parasagittal, as rodactylen Flugsaurier wird. Funktionelle und ichnologische in birds and other dinosaurs. Trackways also show that pte- Untersuchungen beweisen, dass ebenso wie bei Vögeln und rosaurs modifi ed their footfall patterns from the traditional anderen Dinosauriern die Haltung aufrecht und der Gang reptilian condition, suggesting that the habit was secondary. parasagittal war. Auch ihre Fussspuren lassen erkennen dass Comparing forelimb to hindimb lengths without considering sich das Schrittmuster von dem der ursprünglichen Reptilien other morphometric and phylogenetic contexts can provide ableitet, wenn man annimmt dass ihre Art sich fortzubewegen misleading indications of the evolution of limb length in the sekundär entstanden ist. Irreführende Hinweise in der Evolu- origin of pterosaurs. tion der Beinlänge am Ursprung der Flugsaurier können ent- stehen wenn man Vorderbeine und Hinterbeine, ohne andere Key words: Pterosauria, functional morphology, mor- morphometrische und phylogenetische Zusammenhänge zu phometrics, phylogeny, locomotion, evolution berücksichtigen, vergleicht. Schlüsselwörter: Flugsaurier, funktionelle Morphologie, Morphometrie, Phylogenie, Lokomotion, Evolution *E-mail: [email protected] 22 1. Introduction question of posture in the earliest pterosaurs and their ancestors. The holotype of Eudimorphodon cromptonellus has relatively Did pterosaurs evolve from bipedal or quadrupedal ance- short wings, forearms and tibiae, and long metatarsals, and the stors? There have been divergent analyses of the terrestrial proximal limb segments (humerus, ulna, femur, and tibia) are ability of pterosaurs (e.g., PADIAN 1983b, 2003; WELLNHOFER of nearly equal length. Although the specimen is probably a 1988; BENNETT 1997a; UNWIN 1997, 1999 and references the- juvenile individual, based on its osteohistological features, its rein), but the question of the ancestral condition has seldom proportions do not fi t the growth trajectories of other known been approached (PADIAN 1983b, 1991, 1997). Part of the contemporary pterosaurs, justifying its taxonomic separation answer lies in the kinematics of the joints of the hindlimb (JENKINS et al. 2001). The question is what its limb proportions (PADIAN 1983b; WELLNHOFER 1988; BENNETT 1997a), and may tell us about the condition in pterosaur ancestors, and for part in the morphometric ratios of forelimb and hindlimb this, some broader comparative context is necessary. elements. Some considerations have been based on whether the hindlimbs were involved in the wing, and the effect
Recommended publications
  • Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
    This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Download Full Article in PDF Format
    A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA Martín D. EZCURRA Laboratorio de Anatomia Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Angel Gallardo 470, Buenos Aires (1405) (Argentina) [email protected] Ezcurra M. D. 2006. — A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA. Geodiversitas 28 (4) : 649-684. Abstract Eucoelophysis baldwini Sullivan & Lucas, 1999 is represented by several post- cranial elements from the Petrified Forest Formation (Norian), New Mexico, USA. Eucoelophysis Sullivan & Lucas, 1999 was widely considered as a coelo- physoid dinosaur by several authors, but the hindlimb anatomy of this genus clearly indicates that it belongs to neither of these groups. The following fea- tures exclude Eucoelophysis from Neotheropoda: absence of oblique ligament groove on caudal surface of femoral head, femoral medial epicondyle small and smoothly rounded, absence of caudal cleft between medial part of the proximal end of the tibia and fibular condyles, cnemial crest low, and fibular crest absent. Moreover, Eucoelophysis lacks dinosaurian synapomorphic characters, but has a plesiomorphic slightly inturned femoral head that prevents its assignment to Dinosauria. Interestingly, the morphology of the femur of Eucoelophysis is extremely similar to that of the basal dinosauriform Silesaurus opolensis Dzik, Key words Dinosauriformes, 2003 from the Late Triassic of Poland. In order to determine the phylogenetic Coelophysoidea, position of Eucoelophysis, a cladistic analysis was carried out, which depicts Eu- Eucoelophysis, coelophysis as a non-dinosaurian dinosauriform.
    [Show full text]
  • The Origins of Dinosauria: Much Ado About Nothing
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library [Palaeontology, Vol. 57, Part 3, 2014, pp. 469–478] FRONTIERS IN PALAEONTOLOGY THE ORIGINS OF DINOSAURIA: MUCH ADO ABOUT NOTHING by MAX C. LANGER Departamento de Biologia, FFCLRP, Universidade de S~ao Paulo, Av. Bandeirantes 3900,14040-901, Ribeir~ao Preto, SP Brazil; e-mail: [email protected] Typescript received 19 February 2014; accepted in revised form 7 March 2014 Abstract: Research this century has greatly improved our early members of the main dinosauromorph lineages and knowledge of the origin and early radiation of dinosaurs. requires a more meticulous assessment of characters and The unearthing of several new dinosaurs and close out- homologies than those recently conducted. Presently, the groups from Triassic rocks from various parts of the oldest uncontroversial dinosaur records come from Late world, coupled with improved phylogenetic analyses, has Triassic (Carnian) rocks of South America, southern Africa set a basic framework in terms of timing of events and and India, hinting at a south-western Pangaea origin of the macroevolutionary patterns. However, important parts of group. Besides, macroevolutionary approaches suggest that the early dinosauromorph evolutionary history are still the rise of dinosaurs was a more gradual process than pre- poorly understood, rendering uncertain the phylogenetic viously understood. Obviously, these tentative scenarios position of silesaurids as either non-dinosaur Dinosaurifor- need to be tested by new fossil finds, which should also mes or ornithischians, as well as that of various early help close the major gaps recognized in the fossil record of saurischians, such as Eoraptor lunensis and herrerasaurs, as Triassic dinosauromorphs.
    [Show full text]
  • The Anatomy of Asilisaurus Kongwe, a Dinosauriform from the Lifua
    THE ANATOMICAL RECORD (2019) The Anatomy of Asilisaurus kongwe,a Dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa 1 2 3 STERLING J. NESBITT , * MAX C. LANGER, AND MARTIN D. EZCURRA 1Department of Geosciences, Virginia Tech, Blacksburg, Virginia 2Departamento de Biologia, Universidade de Sao~ Paulo, Ribeirao~ Preto, Brazil 3Sección Paleontología de Vertebrados CONICET—Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina ABSTRACT The diagnosis of Dinosauria and interrelationships of the earliest dino- saurs relies on careful documentation of the anatomy of their closest rela- tives. These close relatives, or dinosaur “precursors,” are typically only documented by a handful of fossils from across Pangea and nearly all speci- mens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indi- cates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian- like ankle configuration and a rather short foot with well-developed meta- tarsals I and V.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • University of Birmingham a New Dinosaur With
    University of Birmingham A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil Marsola, Julio; Bittencourt, Jonathas; Butler, Richard; Da Rosa, Atila; Sayao, Juliana; Langer, Max DOI: 10.1080/02724634.2018.1531878 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Marsola, J, Bittencourt, J, Butler, R, Da Rosa, A, Sayao, J & Langer, M 2019, 'A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil', Journal of Vertebrate Paleontology, vol. 38, no. 5, e1531878. https://doi.org/10.1080/02724634.2018.1531878 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 25/07/2018 This is the accepted manuscript for a forthcoming publication in Journal of Vertebrate Paleontology. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Comparative Bone Microstructure of Three Archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina
    Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina JORDI ALEXIS GARCIA MARSÀ, FEDERICO L. AGNOLÍN, and FERNANDO E. NOVAS Marsà, J.A.G., Agnolín, F.L., and Novas, F.E. 2020. Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina. Acta Palaeontologica Polonica 65 (2): 387–398. The Chañares Formation exhibits one of the most important archosauriform records of early Carnian ecosystems. Here we present new data on the palaeohistology of Chañares archosauriforms and provide new insights into their paleobiology, as well as possible phylogenetically informative traits. Bone microstructure of Lagerpeton chanarensis and Tropidosuchus romeri is dominated by fibro-lamellar tissue and dense vascularization. On the other hand, Chanaresuchus bonapartei is more densely vascularized, but with cyclical growth characterized by alternate fibro-lamellar, parallel-fibered and lamellar-zonal tissues. Dense vascularization and fibro-lamellar tissue imply fast growth and high metabolic rates for all these taxa. These histological traits may be tentatively interpreted as a possible adaptative advantage in front of Chañares Formation environmental conditions. Key words: Archosauromorpha, Lagerpeton, Tropidosuchus, paleobiology, paleohistology, Mesozoic, South America. Jordi Alexis Garcia Marsà [[email protected]] and Fernando E. Novas [[email protected]], Labora- torio de Anatomía Comparada y Evolución de los Vertebrados,
    [Show full text]
  • University of Birmingham the Earliest Bird-Line Archosaurs and The
    University of Birmingham The earliest bird-line archosaurs and the assembly of the dinosaur body plan Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Barrett, Paul; Stocker, Michelle; Angielczyk, Kenneth; Smith, Roger; Sidor, Christian; Niedzwiedzki, Grzegorz; Sennikov, Andrey; Charig, Alan DOI: 10.1038/nature22037 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Nesbitt, S, Butler, R, Ezcurra, M, Barrett, P, Stocker, M, Angielczyk, K, Smith, R, Sidor, C, Niedzwiedzki, G, Sennikov, A & Charig, A 2017, 'The earliest bird-line archosaurs and the assembly of the dinosaur body plan', Nature, vol. 544, no. 7651, pp. 484-487. https://doi.org/10.1038/nature22037 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 03/03/2017. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
    A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time.
    [Show full text]
  • Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs Herman Pontzer Washington University in St Louis
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2009 Biomechanics of running indicates endothermy in bipedal dinosaurs Herman Pontzer Washington University in St Louis Vivian Allen Royal Veterinary College, London John R. Hutchinson Royal Veterinary College, London Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Pontzer, Herman; Allen, Vivian; and Hutchinson, John R., ,"Biomechanics of running indicates endothermy in bipedal dinosaurs." PLoS One.,. e7783. (2009). https://digitalcommons.wustl.edu/open_access_pubs/747 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs Herman Pontzer1*, Vivian Allen2, John R. Hutchinson2 1 Department of Anthropology, Washington University, St. Louis, Missouri, United States of America, 2 Structure and Motion Laboratory, Department of Veterinary Basic Sciences, The Royal Veterinary College, London, United Kingdom Abstract Background: One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals.
    [Show full text]