The National Academy of Sciences at 150

Total Page:16

File Type:pdf, Size:1020Kb

The National Academy of Sciences at 150 FROM THE ACADEMY: SACKLER COLLOQUIA SACKLER COLLOQUIA The National Academy of Sciences at 150 Steve Olson1 Seattle, WA 98121 On March 3, 1863, Senator Henry Wilson of Massachusetts rose in the Senate chamber to, as he told his colleagues, “take up a bill...to incorporate the National Academy of Sciences.” He read two short paragraphs concerning membership and the obligation of the Academy to “whenever called upon by any department of the Government, investigate, examine, experiment, and report upon any subject of science or art.” The Senate passed the bill by voice vote, and a few hours later, the House passed it without comment. Later that evening, President Abraham Lincoln signed the bill into law. In the century and a half since 1863, the National Academy of Sciences (NAS) has grown from a small band of 50 charter members—each of whom was specified in the founding legislation—to an organization of more than 2,500 national members and foreign associates. In 1916, the Academy created the National Research Council, which today recruits thousands of specialists each year from the scientific and technological communities to participate in the Academy’s advisory work. The establishment of the National Academy of Engineering in 1964 and the Institute of Medicine in 1970 resulted in a multifaceted institution that investigates issues ranging widely across the sciences, technology, and health. The charter members of the Academy, who met for the first time on April 22, 1863, in the chapel at New York University, scarcely could have envisioned what their fledgling organization would become. To celebrate the Academy’s sesquicentennial, the Arthur M. Sackler Colloquia of the National Academy of Sciences, with additional support from the W. M. Keck Foundation, the Ford Foundation, and the Richard Lounsbery Foundation, held a meeting in Washington, DC, on October 16–18, 2013, entitled “The National Academy of Sciences at 150: Celebrating Service to the Nation.” The meeting began the evening of October 16 with the 2013 Annual Sackler Lecture by Daniel J. Kevles, Stanley Woodward Professor of History, History of Medicine, and American Studies at Yale University, who reviewed the first century of the Academy’s history in the context of its dual mission to advance science and serve the government. Over the next 2 days, eight groups of speakers examined topics where the Academy’s advice has been especially consequential. On the first day, which was focused on science, politics, and policy, the speakers discussed national security and international relations, the International Geophysical Year and the space sciences, climate change, and biology in public policy. On the second day, which examined the nation’s infrastructure in health, information, and education, the topics addressed were radiation hazards, bio- demography and vital statistics, computing and information, and K-12 science education. This supplement to the Proceedings of the National Academy of Sciences contains the edited spoken remarks of the presenters along with short introductions to each of the eight areas discussed. Free downloads of many of the reports mentioned by the speakers are available at www.nap. edu, and Webcasts of the colloquium are available on YouTube.* The National Academy in making in an increasingly technical age from Henry was at first far from pleased, but he charlatans and pretenders. accepted membership in the Academy and, the American Democracy Like the French Academy of Sciences, upon Bache’s death, its presidency. He kept the 1863–1963 which provided the model for the two men, Academy scrupulously out of politics, estab- theUSNationalAcademywouldchooseits lishing the tradition that the Academy would Daniel Kevles, Yale University own membership and be limited to 50 mem- not volunteer its services to the government. bers. Agassiz, elected as the first foreign sec- Perhaps this explains why during the 10 years ’ In 1863, Congress created the National retary, was thrilled, holding that the nation s of his term, the government made only two “ Academy of Sciences, a private agency with men of science now had a standard for sci- requests for advice. the public role of advising the government entific excellence.” Bache was elected as the on policy-related technical issues. The prime first president. During the 5 years of his ad- The First Half Century movers behind the action were Harvard’s ministration, which ended with his death, in ToputtheAcademymoreinlinewith Louis Agassiz, a native of Switzerland and a 1867, the Academy received 13 requests from American democratic institutions, Henry brilliant student of rocks and fossils, and the the federal government for advice on topics obtained a removal of the membership ceil- geophysicist Alexander Dallas Bache, Ben- ranging from assessments of weights, mea- ing so that five new scientists could be elected ’ jamin Franklin’s great-grandson, the head of sures, and coinage to the insulation of ships each year. Henry had come to think that an compasses from the influence of iron cladding the Coast Survey, and an authority on ter- “intelligent democracy” could properly bestow and to tests for the purity of whiskey. restrial magnetism. Agassiz, the academic, Agassiz and Bache had gone behind the saw in a national academy an institution back of their friend, the physicist Joseph This paper results from the Arthur M. Sackler Colloquium of the that would raise the quality of science in the Henry, to achieve their goal. A world-class National Academy of Sciences, “The National Academy of Sciences ” – United States by granting the imprimatur of authority on magnetism and the Secretary of at 150: Celebrating Service to the Nation, held October 16 18, membership not to men of mere learning but 2013, at the National Academy of Sciences in Washington, DC. the Smithsonian, Henry had opposed the The complete program and audio files of most presentations are only to men of original scientific achieve- creation of such an academy, suspecting that it available on the NAS website at www.nasonline.org/NAS-150. ment.Bache,thelongtimefederalscientist, might be considered “at variance with our 1E-mail: [email protected]. ” felt the need for an institution of authoritative democratic institutions and might become *Free downloads are available on YouTube at http://www.youtube. scientists who would safeguard public policy- “perverted...to the support of partisan politics.” com/playlist?list=PLGJm1x3XQeK29zj2uOvOByCgQlcUU3tYh. www.pnas.org/cgi/doi/10.1073/pnas.1406109111 PNAS Early Edition | 1of38 Downloaded by guest on September 28, 2021 honors for achievement, and the creation of happily bypassed the Academy, some de- Mount Wilson Observatory. His entrepre- theAcademyhadopenedinAmericaanother liberately. For example, the American Physical neurial vision increasingly extended beyond “avenue for the aspirations of a laudable Society was founded in 1899 at the initiative astrophysics to turning the National Acad- ambition.” of a physicist at Clark University named Arthur emy, of which he was foreign secretary, into For most of its first half century, however, Gordon Webster. He resented the Academy, to a vital agency in the affairs of national science. a variety of circumstances militated against the which “few of us can hope to belong, and which Hale endorsed increasing the limit on annual Academy’s fulfilling its twin goals of stimulat- wemightnotenjoyifwedid.” For Webster, elections to 15, and he called for the Academy ing the development of American science and as for scientists in other disciplines, their pro- to cooperate with local and national societies, providing reliable scientific advice to the gov- fessional societies provided nonexclusive a venture that would mitigate the exclusionist ernment. Although it was common for Euro- forums where scientists could hear papers objection. He also urged that the Academy pean academies to receive subsidies from their by the leading members in their fields. enlarge its influence by dispensing money for governments, the US National Academy, in These developments undercut the Aca- research, particularly to promising young men, its determination to avoid political corruption, demy’s twin purposes. Unlike the Academy, publishing a proceedings, and acquiring a sought and received none. Its financial resour- most of the specialized societies published building, a permanent meeting home with ces were severely limited, insufficient to publish journals, spun off local sections, and estab- lectures and exhibits open to the public. more than an occasional proceedings and lished systems of awards and recognitions, all All this would of course take money. To obituaries of its members. The Academy met ofwhichmadethemaforceinthedisciplines that end, American science in general and the in the Smithsonian, having no headquarters of they represented. Their members were en- Academy in particular needed to promote itsown,andthemeetingswerepoorlyatten- listed by federal and state agencies to provide greater public appreciation and financial sup- ded. Could an honorific body without resour- expert assessments on the multiplying issues port of research, especially from industry and ces have an impact on the life of American of high-technology society, including, for industrialists. However, both his failed attempts science?No,saidLeoLesquereux,apaleobota- example, conservation, the purity of food and at fundraising and his study of science in nistwhohadmovedfromEuropetothe drugs, and the regulation of the
Recommended publications
  • Charles Hard Townes (1915–2015)
    ARTICLE-IN-A-BOX Charles Hard Townes (1915–2015) C H Townes shared the Nobel Prize in 1964 for the concept of the laser and the earlier realization of the concept at microwave frequencies, called the maser. He passed away in January of this year, six months short of his hundredth birthday. A cursory look at the archives shows a paper as late as 2011 – ‘The Dust Distribution Immediately Surrounding V Hydrae’, a contribution to infrared astronomy. To get a feel for the range in time and field, his 1936 masters thesis was based on repairing a non-functional van de Graaf accelerator at Duke University in 1936! For his PhD at the California Institute of Technology, he measured the spin of the nucleus of carbon-13 using isotope separation and high resolution spectroscopy. Smythe, his thesis supervisor was writing a comprehensive text on electromagnetism, and Townes solved every problem in it – it must have stood him in good stead in what followed. In 1939, even a star student like him did not get an academic job. The industrial job he took set him on his lifetime course. This was at the legendary Bell Telephone Laboratories, the research wing of AT&T, the company which set up and ran the first – and then the best – telephone system in the world. He was initially given a lot of freedom to work with different research groups. During the Second World War, he worked in a group developing a radar based system for guiding bombs. But his goal was always physics research. After the War, Bell Labs, somewhat reluctantly, let him pursue microwave spectroscopy, on the basis of a technical report he wrote suggesting that molecules might serve as circuit elements at high frequencies which were important for communication.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Turning Point in the Development of Quantum Mechanics and the Early Years of the Mossbauer Effect*
    Fermi National Accelerator Laboratory FERMILAB-Conf-76/87-THY October 1976 A TURNING POINT IN THE DEVELOPMENT OF QUANTUM MECHANICS AND THE EARLY YEARS OF THE MOSSBAUER EFFECT* Harry J. Lipkin' Weizmann Institute of Science, Rehovot, Israel Argonne National Laboratory, Argonne, Illinois 60^39 Fermi National Accelerator Laboratory"; Batavia, Illinois 60S10 It is interesting to hear about the exciting early days recalled by Professors Wigner and Wick. I learned quantum theory at a later period, which might be called a turning point in its development, when the general attitude toward quantum mechanics and the study of physics was very different from what it is today. As an undergraduate student in electrical engineering in 19^0 in the United States I found a certain disagreement between the faculty and the students about the "relevance'- of the curriculum. Students thought a k-year course in electrical engineering should include more electronics than a one-semester 3-hour course. But the establishment emphasized the study of power machinery and power transmission because 95'/° of their graduates would eventually get jobs in power. Electronics, they said, was fun for students who were radio hams but useless on the job market. Students at that time did not have today's attitudes and did not stage massive demonstrations and protests against the curriculum. Instead a few of us who wished to learn more interesting things satisfied all the requirements of the engineering school and spent as much extra time as possible listening to fascinating courses in the physics building. There we had the opportunity to listen to two recently-arrived Europeans, Bruno Rossi and Hans Bethe.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Laser Spectroscopy to Resolve Hyperfine Structure of Rubidium
    Laser spectroscopy to resolve hyperfine structure of rubidium Hannah Saddler, Adam Egbert, and Will Weigand (Dated: 12 November 2015) This experiment had two main goals: to create an absorption spectrum for rubidium using the technique of absorption spectroscopy and to resolve the hyperfine structures for the two rubidium isotopes using saturation absorption spectroscopy. The absorption spectrum was used to determine the frequency difference between the ground state and first excited state for both isotopes. The calculated frequency difference was 6950 MHz ± 90 MHz for rubidium 87 and 3060 MHz ± 60 MHz for rubidium 85. Both values agree with the literature values. The hyperfine structure for rubidium 87 was able to be resolved using this experimental setup. The energy differences were determined to be 260 MHz ± 10 MHz and 150 MHz ± 10 Mhz MHz. The hyperfine structure for rubidium 85 was unable to be resolved using this experimental setup. Additionally the theory of doppler broadening was used to make measurements of the full width half maximum. These values were used to calculate a temperature of 310K ± 40 K which makes sense because the experiments were performed at room temperature. I. INTRODUCTION in the theory section and how they were manipulated and used to derive the results from the recorded data. Addi- tionally there is an explanation of experimental error and The era of modern spectroscopy began with the in- uncertainty associated the results. Section V is a conclu- vention of the laser. The word laser was originally an sion that ties the results of the experiment we performed acronym that stood for light amplification by stimulated to the usefulness of the technique of laser spectroscopy.
    [Show full text]
  • Laser Spectroscopy Experiments
    Hyperfine Spectrum of Rubidium: laser spectroscopy experiments Physics 480W (Dated: Sp19 Paper #4) I. OBJECTIVES FOR THESE EXPERIMENTS We wish to use the technique of absorption spec- troscopy to probe and detect the energy level structure of atomic Rubidium, Rb I, whose ground state is split by a tiny amount on account of nuclear magnetism. In effect, the spectroscopy we do today tells us about nuclear prop- erties and so combines atomic and nuclear physics. The main result of this experiment, the 4th of the semester, is to 1. measure the hyperfine splitting for each isotope, and compare with accepted values, with the fol- lowing details in mind: (a) what is the hyperfine splitting of the ground 2 state, S1=2 term? Do we need saturation- absorption techniques for this? (b) what are the hyperfine splittings of the ex- 2 cited state, P3=2 term, that can be reached with a nominal wavelength of 780nm from the ground state? Here we need saturation- absorption techniques to perform sub-Doppler FIG. 1. Note the four 'blobs'. Why are there four? Which spectroscopy, certainly. Help the reader un- 85 are associated with Rb37, and so on. If all goes swimm- derstand what is entailed in the technique, ingly, we'll get an absorption spectrum that looks much line both experimentally and theoretically. You the figure below the setup. The etalon data will be needed to will need to explain what `saturation' means. make the abscissa something proportional to frequency. The The saturation intensity is an important fig- accepted value of the gap between the 2 outermost dips is ure of merit.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • Francis Gladheim Pease Papers: Finding Aid
    http://oac.cdlib.org/findaid/ark:/13030/c8988d3d No online items Francis Gladheim Pease Papers: Finding Aid Finding aid prepared by Brooke M. Black, September 11, 2012. The Huntington Library, Art Collections, and Botanical Gardens Manuscripts Department 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2129 Email: [email protected] URL: http://www.huntington.org © 2012 The Huntington Library. All rights reserved. Francis Gladheim Pease Papers: mssPease papers 1 Finding Aid Overview of the Collection Title: Francis Gladheim Pease Papers Dates (inclusive): 1850-1937 Bulk dates: 1905-1937 Collection Number: mssPease papers Creator: Pease, F. G. (Francis Gladheim), 1881- Extent: Approximately 4,250 items in 18 boxes Repository: The Huntington Library, Art Collections, and Botanical Gardens. Manuscripts Department 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2129 Email: [email protected] URL: http://www.huntington.org Abstract: This collection consists of the research papers of American astronomer Francis Pease (1881-1938), one of the original staff members of the Mount Wilson Solar Observatory. Language: English. Access Open to qualified researchers by prior application through the Reader Services Department. For more information, contact Reader Services. Publication Rights The Huntington Library does not require that researchers request permission to quote from or publish images of this material, nor does it charge fees for such activities. The responsibility for identifying the copyright holder, if there is one, and obtaining necessary permissions rests with the researcher. Preferred Citation [Identification of item]. Francis Gladheim Pease Papers, The Huntington Library, San Marino, California. Provenance Deposit, Observatories of the Carnegie Institution of Washington Collection , 1988.
    [Show full text]
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • High Places.Vp 17 July 2008 22:31:07 Color Profile: Generic CMYK Printer Profile Composite Default Screen
    Color profile: Generic CMYK printer profile Composite Default screen 8 Astronomers at Altitude Mountain Geography and the Cultivation of Scientific Legitimacy K. Maria D. Lane n August 1909, American astronomer William Wallace Campbell, Director of the Lick Observatory, left his home near the summit of Mount Hamilton in Califor- Inia’s Diablo Mountains and travelled with a small expedition party to Mount Whitney in the Sierra Nevada Range. His purpose was to observe the planet Mars with spectroscopic instruments, that would allow him to settle a simmering debate over whether the Martian atmosphere contained any measurable amount of water vapour and, thus, whether the red planet might be habitable.1 To achieve his goal, Campbell had determined that measurements were needed from ‘the highest point of land in the United States’, where the density of Earth’s own atmosphere would be lowest and there- fore least disruptive to the very sensitive processes required to assess the composition of the red planet’s atmosphere.2 Starting from the village of Lone Pine, Campbell and his group travelled by carriage and horseback up the slopes of Mount Whitney to a base camp at 10,300 feet. After two days spent adjusting to the effects of altitude, they continued their ascent on pack animals, despite the fact that ‘the weather for two days past had been threatening’ and that they suffered snow- storms above 12,000 feet.3 After a difficult final ascent, they reached the 14,000-foot summit, where a shelter had been constructed specifically for the expedition’s
    [Show full text]
  • Fang Family San Francisco Examiner Photograph Archive Negative Files, Circa 1930-2000, Circa 1930-2000
    http://oac.cdlib.org/findaid/ark:/13030/hb6t1nb85b No online items Finding Aid to the Fang family San Francisco examiner photograph archive negative files, circa 1930-2000, circa 1930-2000 Bancroft Library staff The Bancroft Library University of California, Berkeley Berkeley, CA 94720-6000 Phone: (510) 642-6481 Fax: (510) 642-7589 Email: [email protected] URL: http://bancroft.berkeley.edu/ © 2010 The Regents of the University of California. All rights reserved. Finding Aid to the Fang family San BANC PIC 2006.029--NEG 1 Francisco examiner photograph archive negative files, circa 1930-... Finding Aid to the Fang family San Francisco examiner photograph archive negative files, circa 1930-2000, circa 1930-2000 Collection number: BANC PIC 2006.029--NEG The Bancroft Library University of California, Berkeley Berkeley, CA 94720-6000 Phone: (510) 642-6481 Fax: (510) 642-7589 Email: [email protected] URL: http://bancroft.berkeley.edu/ Finding Aid Author(s): Bancroft Library staff Finding Aid Encoded By: GenX © 2011 The Regents of the University of California. All rights reserved. Collection Summary Collection Title: Fang family San Francisco examiner photograph archive negative files Date (inclusive): circa 1930-2000 Collection Number: BANC PIC 2006.029--NEG Creator: San Francisco Examiner (Firm) Extent: 3,200 boxes (ca. 3,600,000 photographic negatives); safety film, nitrate film, and glass : various film sizes, chiefly 4 x 5 in. and 35mm. Repository: The Bancroft Library. University of California, Berkeley Berkeley, CA 94720-6000 Phone: (510) 642-6481 Fax: (510) 642-7589 Email: [email protected] URL: http://bancroft.berkeley.edu/ Abstract: Local news photographs taken by staff of the Examiner, a major San Francisco daily newspaper.
    [Show full text]