(Trouessart) and D. Farinae Hughes (Acari: Pyroglyphidae) Sensitivity in Patients with Allergic Rhinitis: a Comparative Study

Total Page:16

File Type:pdf, Size:1020Kb

(Trouessart) and D. Farinae Hughes (Acari: Pyroglyphidae) Sensitivity in Patients with Allergic Rhinitis: a Comparative Study Systematic & Applied Acarology 23(2): 404–404 (2018) ISSN 1362-1971 (print); http://dx.doi.org/10.11158/saa.23.2.17 ISSN 2056-6069 (online) Erratum Correction: Evaluation of Dermatophagoides pteronyssinus (Trouessart) and D. farinae Hughes (Acari: Pyroglyphidae) sensitivity in patients with allergic rhinitis: a comparative study ERHAN ZEYTUN1*, SALİH DOĞAN1, EDHEM ÜNVER2 & FATİH ÖZÇİÇEK3 1 Department of Biology, Arts & Sciences Faculty, Erzincan University, Erzincan, Turkey 2 Department of Chest Disease, Erzincan University School of Medicine, Erzincan, Turkey 3 Department of Internal Medicine, Erzincan University School of Medicine, Erzincan, Turkey * Corresponding author: [email protected] The authors are sorry that they made a mistake in spelling the family name of the first author on line 4 of page 206 in Zeytun et al. (2018): EYTUN should be ZEYTUN. This type error is evident in the paper itself because the running title in the footer of page 207 has the correct name: “ZEYTUN ET AL.: SENSITIVITY TO HDMS IN PATIENTS WITH ALLERGIC RHINITIS”. Reference Zeytun1, E., Doğan, S., Ünver, E. & Özçiçek, F. (2018) Evaluation of Dermatophagoides pteronys- sinus (Trouessart) and D. farinae Hughes (Acari: Pyroglyphidae) sensitivity in patients with allergic rhinitis: a comparative study. Systematic & Applied Acarology, 23(2), 206–215. https://doi.org/10.11158/saa.23.2.2 Published: 22 Feb. 2018 1. Not “Eytun” 404 © Systematic & Applied Acarology Society Systematic & Applied Acarology 23(2): 206–215 (2018) ISSN 1362-1971 (print) http://doi.org/10.11158/saa.23.2.2 ISSN 2056-6069 (online) Article Evaluation of Dermatophagoides pteronyssinus (Trouessart) and D. farinae Hughes (Acari: Pyroglyphidae) sensitivity in patients with allergic rhinitis: a comparative study ERHAN EYTUN1*, SALİH DOĞAN1, EDHEM ÜNVER2 & FATİH ÖZÇİÇEK3 1 Department of Biology, Arts & Sciences Faculty, Erzincan University, Erzincan, Turkey 2 Department of Chest Disease, Erzincan University School of Medicine, Erzincan, Turkey 3 Department of Internal Medicine, Erzincan University School of Medicine, Erzincan, Turkey * Corresponding author: [email protected] Abstract This study was conducted to determine the sensitivity to Dermatophagoides pteronyssinus (Trouessart) and D. farinae Hughes with skin prick tests (SPT) and serologic tests in patients with allergic rhinitis (AR), and to specifically search for those mites in homes of patients. A total of 51 participants, (23 patients and 28 controls) were utilized. Skin-prick tests with D. pteronyssinus and D. farinae allergens were performed on all participants, and serum levels of allergen-specific lgE and total IgE were also measured. Dust samples were collected from homes of all participants and examined under a stereo microscope. 977 D. pteronyssinus (mean 44.4/g) and 24 D. farinae (mean 4.0/g) were isolated from the homes of patients, whereas 35 D. pteronyssinus (mean 4.4/g), and four D. farinae (mean 2.0/g) were isolated from the homes of the controls. Patients with D. pteronyssinus in their homes had 95.5% sensitivity to the species according to SPT and 27.3 according to IgE. Patients with D. farinae in their homes had 83.3% sensitivity to the species according to SPT, and 50% according to IgE. Dermatophagoides pteronyssinus sensitivity in the controls was detected as 12.5% according to SPT; however, D. farinae sensitivity was not detected according to both SPT and mite-specific IgE. Differences between patients and controls utilizing SPT results was statistically significant, but not when using mite-specific IgE results. As a result, it was determined that patients with AR in Erzincan province were sensitized to D. pteronyssinus and D. farinae, and that their homes contained those species. It may be helpful to consider these findings in clinical assessment of patients with AR, and also in treatment utilizing immunotherapy techniques. Keywords: Allergic rhinitis, allergens, Dermatophagoides, house dust mite, immunotherapy Introduction House dust mites (HDMs) are microscopic arthropods belonging to the class Arachnida, superorder Acariformes (Zhang et al. 2011). The term “house dust mite” is usually used for Dermatophagoides pteronyssinus (Trouessart), D. farinae Hughes, and Euroglyphus maynei (Cooreman) living in house dust and belonging to the family Pyroglyphidae (Spieksma 1997; Colloff 2009; Aykut et al. 2013a, 2016; Zeytun et al. 2017). The main biotopes of HDMs are mattresses, pillows, carpets, fabric- covered furniture, velvet curtains, and fuzzy toys (Somorin et al. 1978; Colloff 2009). The primary nutritional sources for mites are skin scales rich in proteins and lipids and the microorganisms living on skin (Colloff 2009). They are known to play a role in etiology of some allergic diseases, namely allergic asthma, allergic rhinitis, allergic conjunctivitis, and atopic dermatitis (Bousquet et al. 2008; Colloff 2009). Allergic rhinitis (AR) is an upper respiratory tract disease that develops through specific IgE as a result of exposure of the nasal mucosa to allergens (Bousquet et al. 2008). Although not fatal, this 206 © Systematic & Applied Acarology Society disease decreases quality of life, causes considerable loss of schooling and working, and is a burden to the community both socially and economically. Its prevalence varies from country to country depending on the respiratory-allergen load. Allergens include plant pollens, fungi, occupational allergens, and HDMs. The most common and effective HDM allergens are Der p, from D. pteronyssinus exposure and Der f, from D. farinae exposure. The allergenic features of HDMs are caused by their feces and their body tissues (Colloff 2009; Calderon et al. 2015; Vidal-Quist et al. 2015). Over time, mite feces and body-tissue residues from their fragmentation after death accumulate in carpets, fabric-covered furniture, fuzzy toys, mattresses, and pillows. These allergens remaining suspend in air for a time and mix with air taken into the respiratory track, thereby stimulating immune-system elements (Bousquet et al. 2008). Many studies have been performed worldwide on the distribution and determination of HDM species, allergen types and levels, and their relationship to several allergic diseases. In a previous study, Zeytun et al. (2017) investigated the sensitivity to HDMs in allergic asthmatic patients; however, to the best of our knowledge, there are no studies that specifically searched for mites in the homes of patients with AR and also evaluated skin and serologic test outcomes. The present study was conducted to determine the sensitivity to D. pteronyssinus and D. farinae utilizing skin and serologic tests in patients with AR, and to search for mites in their homes. Such studies are important for a better understanding of the role HDMs play in the allergic rhinitis etiology. Material and Method Invstigations were conducted between January 2014 and June 2014 in Erzincan, Turkey, a province that has approximately 100,000 inhabitants, an elevation of 1,185m above sea level, and a continental climate. The study group included 23 patients examined at the Clinics of Otolaryngology and Chest Diseases at the Mengücek Gazi Training and Research Hospital and diagnosed with AR according to ARIA (Allergic Rhinitis and its Impact on Asthma) criteria (Bousquet et al 2008). Twenty-eight healthy people without allergic rhinitis symptoms such as sneezing, watery rhinorrhoea, nasal obstruction, itching of nose and throat, and ear and eye symptoms (e.g. in the form of redness, watering and itching) in the clinical examination were selected as the control group. The study was approved by the Erzincan University Ethics Committee (Decision №: 2014-02/06), and all participants signed informed consent forms prepared in accordance with the Helsinki Declaration. All participants were subjected to skin prick tests for the determination of sensitivity to D. pteronyssinus and D. farinae, and their serum levels for allergen-specific lgE and total IgE were measured. Der p and Der f solutions (Lofarma; Milano, Italy) were used as the HDM allergens in the SPT, and the evaluation was done after 15 minutes. Indurations of 3 mm or greater were considered positive. Levels of allergen-specific IgE were measured with the immunoblot method, while the total IgE level was determined by the CLIA (Chemi Luminescence Immuno Assay) method. Specific IgE levels of ≥ 0.35 kUA/L and total IgE values of ≥ 87 U/mL were considered positive. Methods for the collection of dust samples, and the extraction, preparation and identification of mite specimens follow the method used by Zeytun et al. (2016, 2017). Data were analyzed using SPSS 20.0 (Statistical Package for Social Sciences; Chicago, IL, USA). The Kolmogorov–Smirnov test was used to check for normal distribution of variables. A Mann-Whitney U-test was used to compare non-normally distributed variables between the groups. Pearson correlation test was used to correlate mite density and IgE levels. The chi-square test was used to compare categorical data. A probability value of 0.05 or less was considered statistically significant. 2018 ZEYTUN ET AL.: SENSITIVITY TO HDMS IN PATIENTS WITH ALLERGIC RHINITIS 207 Results Twenty-three patients (median age 32, min. age 16, max. age 60; 17 females and six males) and 28 controls (median age 25, min. age 17, max. age 69; 10 females and 18 males) were included in the study (Table 1). TABLE 1. Demographic characteristics of the patients and controls. Patients Controls P value Age (Years) 32 (16–60) 25 (17–69) >0.05 a Median (min – max)] Sex <0.05 b Female 17 (73.9%) 10 (35.7%) Male 6 (26.1%) 18 (64.3%) min: minimum, max: maximum a Mann Whitney-U test b Chi square test Dermatophagoides pteronyssinus positivity of patients and controls was detected as 91.3% and 39.3% respectively, according to the SPT results, and the differences between groups was found statistically significant (p<0.001). Dermatophagoides farinae positivity was found in 43.5% of patients and 25% of controls, but no significant difference was found between the groups. According to the mite-specific IgE results, 30.4% of patients had D. pteronyssinus-specific IgE positivity (p=0.002), and 34.8% had D.
Recommended publications
  • Brucellosis in Humans – Etiology, Diagnostics, Clinical Forms
    Annals of Agricultural and Environmental Medicine 2013, Vol 20, No 2, 233–238 REVIEW ARTICLE www.aaem.pl Brucellosis in humans – etiology, diagnostics, clinical forms Elżbieta Monika Galińska1, Jerzy Zagórski2 1 Department of Allergology and Environmental Hazards, Institute of Rural Health, Lublin, Poland 2 Department of Public Health, Institute of Rural Health, Lublin, Poland Galińska EM, Zagórski J. Brucellosis in humans – etiology, diagnostics, clinical forms. Ann Agric Environ Med. 2013; 20(2): 233–238. Abstract Brucellosis in humans is a zoonosis of greatly varied clinical image. It occurs on all inhabited continents. The course of the disease may be acute, sub-acute or chronic. The etiologic factors of brucellosis are small, aerobic Gram-negative rods of the genus Brucella, which currently contains ten species: B. abortus, B. suis, B. ovis, B. melitensis, B. canis, B. neotomae, B. pinnipedialis, B. ceti, B. microti and B. inopinata. In humans, the disease is caused mainly by: B. melitensis as the most pathogenic species, followed by B. suis, whereas B. abortus is considered as the mildest type of brucellosis. The natural reservoir of the germ and the source of infection in humans are infected domestic animals, primarily cattle, sheep, goats, as well as wild animals. Infection in humans occurs by penetration through damaged skin, conjunctiva, and more rarely via the alimentary route by the consumption of infected products. Especially exposed are: veterinarians, veterinary technicians, insemination service employees, zoo technicians,
    [Show full text]
  • (DNCB) and Respiratory Allergy in the Th2-Prone Brown Norway Rat C
    Available online at www.sciencedirect.com Toxicology 246 (2008) 213–221 The contact allergen dinitrochlorobenzene (DNCB) and respiratory allergy in the Th2-prone Brown Norway rat C. Frieke Kuper a,∗, Rob H. Stierum a, Andre Boorsma a,b, Marcel A. Schijf a, Menk Prinsen a, Joost P. Bruijntjes a, Nanne Bloksma c, Josje H.E. Arts a a TNO, Quality of Life, Zeist, The Netherlands b Department of Health Risk Analysis and Toxicology, Maastricht University, Maastricht, The Netherlands c Subfaculty of Biology, Faculty of Science, Utrecht University, The Netherlands Received 30 October 2007; received in revised form 21 December 2007; accepted 21 January 2008 Available online 2 February 2008 Abstract All LMW respiratory allergens known to date can also induce skin allergy in test animals. The question here was if in turn skin allergens can induce allergy in the respiratory tract. Respiratory allergy was tested in Th2-prone Brown Norway (BN) rats by dermal sensitization with the contact allergen dinitrochlorobenzene (DNCB; 1%, day 0; 0.5%, day 7) and a head/nose-only inhalation challenge of 27 mg/m3 of DNCB (15 min, day 21), using a protocol that successfully identified chemical respiratory allergens. Skin allergy to DNCB was examined in BN rats and Th1-prone Wistar rats in a local lymph node assay followed by a topical patch challenge of 0.1% DNCB. Sensitization of BN rats via the skin induced DNCB-specific IgG in serum, but not in all animals, and an increased number of CD4+ cells in the lung parenchyma. Subsequent inhalation challenge with DNCB did not provoke apneas or allergic inflammation (signs of respiratory allergy) in the BN rats.
    [Show full text]
  • Culicoides Obsoletus Allergens for Diagnosis of Insect Bite Hypersensitivity in Horses
    Culicoides obsoletus allergens for diagnosis of insect bite hypersensitivity in horses Nathalie M.A. van der Meide Thesis committee Promotor Prof. dr. ir. H. F. J. Savelkoul Professor of Cell Biology and Immunology Wageningen University Co-promotor Dr. E. Tijhaar Assistent professor, Cell Biology and Immunology Group Wageningen University Other members Prof. dr. ir. B. Kemp, Wageningen University, The Netherlands Dr. B. Wagner, Cornell University, Itaca, USA Prof. dr. V.P.M.G. Rutten, Utrecht University, The Netherlands Prof. dr. R. Gerth van Wijk, Erasmus MC Rotterdam, The Netherlands This research was conducted under the auspices of the Graduate School of the Wageningen Institute of Animal Sciences Culicoides obsoletus allergens for diagnosis of insect bite hypersensitivity in horses Nathalie M.A. van der Meide Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M. J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 13 September 2013 at 1.30 p.m. in the Aula Nathalie M.A. van der Meide Culicoides obsoletus allergens for diagnosis of insect bite hypersensitivity in horses PhD Thesis, Wageningen University, Wageningen, NL (2013) With references, with summaries in Dutch and English ISBN: 978-94-6173-669-7 Contents Chapter 1 General introduction 7 Chapter 2 Culicoides obsoletus extract relevant for diagnostics of insect bite hypersensitivity in horses 45 Chapter 3 Seasonal
    [Show full text]
  • Cscl Specimen Collection Guide 1
    CSCL SPECIMEN COLLECTION GUIDE 1 Test Name Alternative Name Specimen Special Requirements ? CSF β-transferrin, tau transferrin Nasal or ear secretions ?Parasite Parasitosis Parasite in a pottle 1,25 dihydroxy cholecalciferol 1,25 diOH Vit D, 1,25 dihydroxy Vit D, Calcitriol Yellow Protect from light with tinfoil. 1,25 Di-OH Vit D 1,25 Dihydroxy Vitamin D, 1,25 diOH cholecalciferol, Calcitriol Yellow Protect from light with tinfoil. 11 Deoxycortisol Metyrapone test Yellow Take dedicated tube. State whether pre or post metyparone sample. 17 hydroxysteroids 17 ketosteroids, Urine cortisol Urine - random or 24hr plain collection 17 β estradiol - sensitive Yellow Preferred sample collected between 0800-1000. 17-Ketosteroid - refer to Cortisol 17OH Progesterone Yellow Note pre and post dose on CHL sticker if this test is done with a synacthen test. 17-OH Progesterone/P4 17α hydroxy progesterone Yellow Note pre and post dose on CHL sticker if this test is done with a synacthen test. 17α hydroxy progesterone 17-OH progesterone/P4 Yellow Note pre and post dose on CHL sticker if this test is done with a synacthen test. 17β Oestradiol Estradiol, Estrogen, E2, Oestradiol Yellow 17β Oestradiol - Sensitive Estradiol, Estrogen, E2, Oestradiol Yellow NOTE: Sensitive assay no longer available at CHL. OES done at CSCL instead. 25-hydroxy cholecalciferol Vitamin D, Cholecalciferol, 25-OH vitamin D Yellow 25-hydroxy vitamin D 25-OH vitamin D, cholecalciferol Yellow 25-OH cholecalciferol 25-hydroxy vitamin D Yellow 5 hydoxy tryptamine - see 5HT 5HIAA HIAA Quantitation, 5-hydroxy indole acetic acid, serotonin metabolites, 24hr Urine bottle (acid or plain) or random collection (>5mL) Medication history must be noted on request form.
    [Show full text]
  • Skin Allergy Testing
    CONSENT WHAT TO EXPECT AT WELLINGTON SCL Allergens used in Skin Prick Testing, including the positive Our experienced staff are fully trained in the performance of these control are considered to be medicines therefore required tests but the ordering doctor remains responsible for explaining the to be registered in New Zealand. Unfortunately the results. Histamine control and some allergens available are not currently registered, therefore come under Section 29 of Once your arm (or back) is prepared a small amount of each allergen the Medicines Act. is applied and pricked. Your immune system will interact with the allergen over the next 15 minutes and produce an itchy wheal (like Under the Medicines Act 1981, the pharmaceutical a mosquito bite) if you have sensitisation to that product. You must company selling the medicine has to inform the Director not scratch the wheals while they develop as this may change their Skin Allergy of Health that it has sold the medicine to the laboratory, intensity. and has to name the doctor and yourself, describe the medicines and say where and when the medicine was sold. Some medications, such as antihistamines and antidepressants may This means we may have to supply these particulars to the interfere with the results. Please let us know what medications are Testing pharmaceutical company. being taken before booking the appointment. Negative testing does not guarantee there is no allergy but makes an allergic cause less likely. Further tests may be required to find I the cause of the problem or challenge testing may be required. Our have received enough information to provide my consent Immunopathologists also work as Allergists and welcome contact for the performance of the Skin Allergy Test.
    [Show full text]
  • Opinion on Allergy Alert Test (AAT) As a Proof-Of-Concept Study ______
    SCCS/1607/19 Final Opinion Scientific Committee on Consumer Safety SCCS OPINION ON Allergy Alert Test (AAT) as a proof-of-concept study The SCCS adopted the final Opinion by written procedure on 10 September 2019 SCCS/1607/19 Final Opinion Opinion on Allergy Alert Test (AAT) as a proof-of-concept study _________________________________________________________________________________________________________________ ACKNOWLEDGMENTS SCCS members listed below are acknowledged for their valuable contribution to the finalisation of this Opinion. For the preliminary and the final versions SCCS members Dr U. Bernauer Dr L. Bodin Prof. Q. Chaudhry (SCCS Chair) Prof. M. Dusinska Dr J. Ezendam Dr E. Gaffet Prof. C. L. Galli Dr B. Granum Prof. E. Panteri Prof. V. Rogiers (SCCS Vice-Chair) Dr Ch. Rousselle Dr M. Stepnik Prof. T. Vanhaecke Dr S. Wijnhoven SCCS external experts Dr A. Koutsodimou Dr A. Simonnard Prof. W. Uter (Rapporteur) All Declarations of Working Group members are available on the following webpage: http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm This Opinion has been subject to a commenting period of a minimum eight weeks after its initial publication (from 13 May 2019 until 12 July 2019). Comments received during this time period were considered by the SCCS. For this Opinion, comments received resulted in the following main changes: SCCS comments in sections 3.2.4, 3.3.2.1. and 3.3.2.5. These changes are not impacting the discussion and conclusion parts that remain unchanged. 2 SCCS/1607/19 Final Opinion Opinion on Allergy Alert Test (AAT) as a proof-of-concept study _________________________________________________________________________________________________________________ 1.
    [Show full text]
  • Skin Allergy Test Information for Patients, Relatives and Carers
    Lung Function Laboratory Skin allergy test Information for patients, relatives and carers This leaflet has been designed to give you information about skin allergy test and answers some of the questions that you or those who care for you may have. It is not meant to replace the discussion between you and your medical team but aims to help you understand more about what is discussed. If you have any questions about the information below, please contact us. Introduction The skin allergy test or skin prick test is a diagnostic test that investigates the immediate response of your body when exposed to specific allergens. This can aid your doctor in diagnosing and treating the symptoms you may be suffering from. What to expect on the day The test will be performed by putting drops of liquid allergen on the skin of your forearm and then lightly pricking the skin to see if a reaction occurs. Once the reactions have had a sufficient time to develop they will then be measured with the entire process taking roughly 30 minute in duration. During this time you may experience some minor swelling and itchiness around the test sites which should subside prior to you leaving the lung function department. Allergens we test for Air-borne allergens are transported through the air and into the nose, which can cause an allergic reaction. We test the most common allergy triggers from within and around your home environment. These include animal fur, feathers, tree and flower pollen, mould spores and house dust mite. We test 10 allergens as well as two control solutions.
    [Show full text]
  • Sensitivity to House Dust Mites Allergens in Patients with Allergic
    34 Original Investigation / Özgün Araştırma Sensitivity to House Dust Mites Allergens in Patients with Allergic Asthma in Erzincan Province, Turkey Erzincan’da Alerjik Astımlı Hastaların Ev Tozu Akar Alerjenlerine Karşı Duyarlılığı Erhan Zeytun1, Salih Doğan1, Fatih Özçiçek2, Edhem Ünver3 1Department of Biology, Erzincan University Faculty of Arts and Sciences, Erzincan, Turkey 2Department of Internal Medicine, Erzincan University School of Medicine, Erzincan, Turkey 3Department of Chest Disease, Erzincan University School of Medicine, Erzincan, Turkey ABSTRACT Objective: To investigate the sensitivity of allergic asthma (AA) patients to house dust mites (HDM) by conducting skin tests, measuring total and specific IgE antibodies toDermatophagoides pteronyssinus and D. farinae mites, and examining HDM fauna in patients’ homes. Methods: The study included 25 patients with AA and 31 healthy controls, who were challenged with Der p and Der f allergens; serum levels of allergen-specific lgE and total IgE were measured. Dust samples were collected from the homes of all participants, and mite species and the number of mites per gram of dust were investigated. Results: D. pteronyssinus was found in the homes of 94.7% patients with positive Der p reactions in the skin test (p<0.001). D. farinae was found in the homes of 22.2% patients with positive Der f reactions in the skin test (p>0.05). D. pteronyssinus-specific IgE was detected in 75% patients in whose homes D. pteronyssinus was also found, while D. farinae-specific IgE was detected in 16.6% patients in whose homesD. farinae was also found. Conclusion: A part of AA patients residing in Erzincan are sensitive to HDM allergens, and high numbers of mites leading to allergic sensi- tization are found in their homes.
    [Show full text]
  • Atopic Dermatitis with Possible Polysensitization and Monkey Esophagus Reactivity
    www.najms.org North American Journal of Medical Sciences 2010 July, Volume 2. No. 7. Case Report OPEN ACCESS Atopic dermatitis with possible polysensitization and monkey esophagus reactivity Ana Maria Abreu Velez, MD, Ph.D1, Michael S. Howard, MD,1 Bruce R. Smoller MD 2 1Georgia Dermatopathology Associates, Atlanta, Georgia, USA. 2Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. Citation: Abreu Velez AM, Howard MS, Smoller BR. Atopic dermatitis with possible polysensitization and monkey esophagus reactivity. North Am J Med Sci 2010; 2: 336-340. Availability: www.najms.org ISSN: 1947 – 2714 Abstract Context: Atopic dermatitis is a chronic inflammatory skin disease resulting from interactions between environmental and genetic factors. Recent studies link atopic dermatitis with asthma and with eosinophilic esophagitis. Case Report: Based on this association, we investigated by indirect immunofluorescence the immunoreactivity patterns on monkey esophagus substrate utilizing the serum of a patient with severe atopic dermatitis. We also examined the patient’s skin biopsy by H&E histology and immunohistochemistry. We detected strong deposits of albumin, IgE, IgG, IgD, IgA, Complement/C1q and mast cell tryptase in multiples structures of the skin, as well as a broad pattern of intraepithelial staining on monkey esophagus. Strong staining positivity was also detected within the inflammatory infiltrate around the upper dermal vessels, as well as additional positive staining for the human leukocyte antigen system antigens DR DP and DQ. Conclusion: Our findings demonstrate that there could be an indication for testing patients with severe atopic dermatitis for autoreactivity to filaggrin (anti-keratin antibodies) utilizing monkey esophagus.
    [Show full text]
  • Medical Review
    Publishing Sector of the Society of Physicians of Vojvodina of the Medical Society of Serbia, Novi Sad, Vase Stajica 9 MEDICAL REVIEW JOURNAL OF THE SOCIETY OF PHYSICIANS OF VOJVODINA OF THE MEDICAL SOCIETY OF SERBIA THE FIRST ISSUE WAS PUBLISHED IN 1948 Editor-in-Chief LJILJA MIJATOV UKROPINA Assistant to the Editor-in-Chief for Clinical Branches: PETAR SLANKAMENAC Assistant to the Editor-in-Chief for Imaging Methods: VIKTOR TILL Assistants to the Editor-in-Chief SONJA LUKAČ ŽELJKO ŽIVANOVIĆ EDITORIAL BOARD OKAN AKHAN, Ankara MIROSLAV MILANKOV, Novi Sad ANDREJ ALEKSANDROV, Birmingham OLGICA MILANKOV, Novi Sad STOJANKA ALEKSIĆ, Hamburg IGOR MITIĆ, Novi Sad VLADO ANTONIĆ, Baltimor NADA NAUMOVIĆ, Novi Sad ITZHAK AVITAL, Bethesda AVIRAM NISSAN, Ein Karem KAREN BELKIĆ, Stockholm JANKO PASTERNAK, Novi Sad JEAN-PAUL BEREGI, Lille Cedex ĐORĐE PETROVIĆ, Novi Sad HELENA BERGER, Ljubljana LJUBOMIR PETROVIĆ, Novi Sad KSENIJA BOŠKOVIĆ, Novi Sad TOMISLAV PETROVIĆ, Novi Sad VLADIMIR ČANADANOVIĆ, Novi Sad MIHAEL PODVINEC, Basel IVAN DAMJANOV, Kansas City JOVAN RAJS, Danderyd JADRANKA DEJANOVIĆ, Novi Sad TATJANA REDŽEK MUDRINIĆ, Novi Sad OMER DEVAJA, Meidstone PETAR E. SCHWARTZ, New Haven RADOSLAVA DODER, Novi Sad MILAN SIMATOVIĆ, Banja Luka PETAR DRVIŠ, Split TOMAŠ SKRIČKA, Brno ZORAN GOJKOVIĆ, Novi Sad PETAR SLANKAMENAC, Novi Sad IRENA HOČEVAR BOLTEŽAR, Ljubljana EDITA STOKIĆ, Novi Sad DEJAN IVANOV, Novi Sad ALEXANDER STOJADINOVIĆ, Glen Alen MARIJA JEVTIĆ, Novi Sad MILANKA TATIĆ, Novi Sad MARINA JOVANOVIĆ, Novi Sad VIKTOR TILL, Novi Sad ZORAN KOMAZEC,
    [Show full text]
  • Asia Pacific Educational & Teaching Material Doi: 10.5415/Apallergy.2011.1.1.43 Allergy Asia Pac Allergy 2011;1:43-49
    pISSN 2233-8276 · eISSN 2233-8268 Asia Pacific Educational & Teaching Material doi: 10.5415/apallergy.2011.1.1.43 allergy Asia Pac Allergy 2011;1:43-49 Hypersensitivity manifestations to the fruit mango Richa Sareen and Ashok Shah* Department of Respiratory Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India The objectives of this study are 1) To review the published data and document the current knowledge on allergic manifestations to the fruit mango 2) To highlight the two distinct clinical presentations of hypersensitivity reactions caused by mango 3) To discuss the role of cross-reactivity 4) To increase awareness of potentially life threatening complications that can be caused by allergy to mango. An extensive search of the literature was performed in Medline/PubMed with the key terms “mango”, “anaphylaxis”, “contact dermatitis”, “cross-reactivity”, “food hypersensitivity”, “oral allergy syndrome” and “urticaria”. The bibliographies of all papers thus located were searched for further relevant articles. A total of 17 reports describing 22 patients were documented, including ten patients with immediate hypersensitivity reaction and twelve patients with delayed hypersensitivity reaction to mango. Ten of these patients (four with immediate reaction; six with delayed reaction) were from geographical areas cultivating mango, whereas twelve patients (six with immediate reaction; six with delayed reaction) were from the countries where large scale mango cultivation does not occur. The clinical features, pathogenesis and diagnostic modalities of both these presentations are highlighted. The fruit mango can cause immediate and delayed hypersensitivity reactions, as also “oral allergy syndrome”. Although rare, it can even result in a life threatening event.
    [Show full text]
  • Allergy Tests When You Need Them—And When You Don’T
    ® Allergy tests When you need them—and when you don’t llergy tests may help find allergies to things you eat, touch, or breathe in. They are usually A skin or blood tests. However, allergy tests alone are generally not enough. It is important to have a doctor’s exam and medical history first to help diagnose allergies. If the exam and medical history point to allergies, allergy tests may help find what you are allergic to. But if you don’t have symptoms and you haven’t had a medical exam that points to an allergy, you should think twice about allergy testing. Here’s why: Allergy tests, without a doctor’s exam, usually are not reliable. Many drugstores and supermarkets offer free screenings. And you can even buy kits to test for allergies yourself at home. But the results of these tests may be misleading. • The tests may say you have an allergy when you do not. This is called a “false positive,” or those foods. You may end up with a poor diet, false alarm. unnecessary worries and frustration, or extra food • These free tests and home tests for food allergies costs. If the test says you are allergic to cats or dogs, are not always reliable. you may give up a loved pet. Unreliable test results can lead to unnecessary And tests for chronic hives—red, itchy, raised areas changes in your lifestyle. of the skin that last for more than six weeks—can If the test says you are allergic to some foods, such show something that may not look normal but is as wheat, soy, eggs, or milk, you may stop eating not a problem.
    [Show full text]