Analysis of the Genetic Divergence in Asian Strains of ZIKA Virus with Reference to 2015-2016 Outbreaks

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Genetic Divergence in Asian Strains of ZIKA Virus with Reference to 2015-2016 Outbreaks DISCLAIMER This paper was submitted to the Bulletin of the World Health Organization and was posted to the Zika open site, according to the protocol for public health emergencies for international concern as described in Christopher Dye et al. ( http://dx.doi.org/10.2471/BLT.16.170860 ). The information herein is available for unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited as indicated by the Creative Commons Attribution 3.0 Intergovernmental Organizations licence (CC BY IGO 3.0). RECOMMENDED CITATION Shrinet J, Agrawal A, Bhatnagar RK, Sujatha Sunil S. Analysis of the genetic divergence in Asian strains of ZIKA virus with reference to 2015-2016 outbreaks. [Submitted]. Bull World Health Organ. E-pub: 22 Apr 2016. doi: http://dx.doi.org/10.2471/BLT.16.176065 Analysis of the genetic divergence in Asian strains of ZIKA virus with reference to 2015-2016 outbreaks Jatin Shrinet, a Aditi Agrawal, a Raj K Bhatnagar a & Sujatha Sunil a aInternational Centre for Genetic Engineering and Biotechnology, New Delhi-110067, India Correspondence to: Sujatha Sunil (e-mail: [email protected]) (Submitted: 20 April 2016 – Published online: 22 April 2016) Abstract Objective: To compare Zika virus (ZIKV) genomes of the 2015-2016 outbreaks with the older strains and evaluate evolution of ZIKV. Method: We performed several genetic analyses to 50 ZIKV genomes currently available in the public domain. Phylogenetic and mutation analysis, recombination analysis, molecular evolution and selection analysis identified amino acid variations that were unique to the 2015-2016 outbreak strains and the status of recombination and evolution amongst these sequences. Findings: We report distinct amino acid variations in the structural and non- structural proteins of all 2015-2016 outbreak strains that are conserved amongst these strains. Our results also reveal unique motifs in the UTRs of the new ZIKV strains. We identified recombination events in the African strains but not in the recent isolates of Asian lineage. Population level analysis revealed over dominant selection of alleles in the genome. Conclusion: 2015-2016 strains of ZIKV show distinct molecular signatures in their genomes that are conserved across strains isolated from different parts of the globe during the outbreak period. Our analysis at the population level emphasizes on a possibility of balancing selection of the alleles. Introduction Arboviruses are an important group of viruses of medical relevance due to the wide range of illnesses they cause. In the last two decades, infections caused by these viruses have been major public health concerns resulting in pandemics and epidemics (1, 2). The latest addition to this list is Zika virus (ZIKV) with the World Health Organization declaring Zika fever (ZF) as a Public Health Emergency of International concern due to its possible association with neurological and birth conditions(3). Zika virus is a member of the genus Flavivirus, family Flaviviridae (4)that has other medically important flaviviruses like dengue, yellow fever, West Nile, Japanese encephalitis viruses. Originally maintained in a sylvatic cycle (5), the first virus was isolated from a Macaca monkey in 1947 in the Zika forest region of Uganda (6). In these conditions humans are considered to be incidental hosts; however, in the absence of non-human primates, humans probably serve as the primary amplification hosts (7). The first human case was reported in 1954 in Nigeria (8),and sporadic cases have been reported from different regions around the globe over the years (9-12). In addition to clinical cases, isolation of ZIKV from vectors has also been reported (13-15). The ZIKV genome consists of a 10794 bps long single stranded RNA of positive sense encoding a single open reading frame (ORF). Flanked by two non-coding regions (5’ and 3’ untranslated regions), the ORF encodes a polyprotein: C-prM-E-NS1-NS2A-NS2B-NS3-NS4A- NS4b-NS5, which is cleaved into three structural proteins, namely, capsid (C), premembrane/membrane (prM) and envelope (E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) (16, 17). Based on serologic and genetic properties, three lineages, namely, East African, West African and Asian, have been identified (18). In 2015, the Americas witnessed a huge outbreak of ZF with neurological implications and symptoms of Guillian-Barre syndrome in affected individuals (19).Epidemiological studies reveal the transmission to have originated on Yap in Micronesia in 2007 (18) that spread to other Pacific islands (20) and to South and Central America (21). With the rapid spread of this virus to several parts of the globe, it is imperative to understand the cause of spread. Until 2012, there were eight genomes available; however, post 2012, 42 genomes have been reported in the public domain (till 20 th March 2016) of which 25 genomes reported post January 2016. Analyzing these genomes at a molecular level may reveal the genetic divergence the newer viruses may exhibit thereby providing insights to the evolution of the virus. The present report is a bioinformatics characterization of the genomes of ZIKV isolated post 2015 and comparison with the older strains of ZIKV. Materials and Methods Genome sequences and Phylogenetic analysis A total of 50 genome sequences of ZIKV were retrieved from NCBI database. The sequences were multiple aligned and manually edited to discard any aberration in the sequences. Twelve different gene sequences of ZIKA virus namely, Capsid, pr, M, Envelope (E), NS1, NS2A, NS2B, NS3, NS4A, 2K, NS4B and NS5 were extracted from the multiple aligned genome sequences and were further used for analysis of variations in the proteins. The phylogenetic analysis of trimmed genome sequences were performed using MEGA6 tool (22). Neighbor- joining method, Minimum Evolution method with Gamma parameter 1 and 100 bootstrap replications, Maximum likelihood method, UPGMA method and Maximum Parsimony method models were used to construct the phylogenetic tree. Phylogeny test was performed using bootstrap method and by taking 1000 number of bootstrap replications. UTR analysis 5’ UTR and 3’ UTR sequences were extracted from the genome and aligned using MEGA6. UTR sequences were not present for all the genomes and also some of the genomes have short UTR sequences. The aligned sequences were then analyzed to study the conservation of residues. The multiple aligned sequences were also subjected to RNAalifold web server to predict consensus secondary structures of both the UTR sequences(23). Recombination analysis The multiple aligned ZIKV genome sequences were subjected to recombination analysis using RDP tool (24). RDP analyze the sequences using 7 methods namely, RDP (R), GENECONV (G), MaxChi (M), Chimaera (C), Bootscan (B), 3Seq (T) and SiScan (S). The events predicted by more than 5 methods and without any unknown parent and p-value<0.05 were considered recombination event. Molecular evolution and selection analysis Transition/Transversion bias, Substitution matrix, overall means distance variations were calculated using MEGA 6. Tajima’s test of neutrality was also performed using MEGA6 tool. Results and Discussion Fifty ZIKV genome details that were used in the study are listed in Supplementary Table 1. Of these sequences, 15 were belonged to year 2015; ten belonged to 2016 (as of March, 2016). Amongst the remaining sequences, two sequences each were isolated in the years 2014, 2013, 2001, 1968 and 1974. One sequence each was reported from years 2012, 2010, 2007, 2000, 1997, 1984, 1976 and 1966. Information about the isolation date was not available for seven sequences. The geographical distribution of these sequences showed that nine sequences were from Brazil and all were isolated in year 2015. Two sequences of 2015 were isolated from Guatemala and one sequence each of 2015 belongs to Suriname, Puerto Rico, Martinique and Colombia. Several of these sequences have been previously used to study molecular evolution of ZIKV in the earlier years (25, 26). The phylogenetic tree of 50 ZIKV sequences was constructed using Neighbor-joining methods (Figure 1). The tree was also constructed using other methods, namely, Minimum Evolution method with Gamma parameter 1 and 100 bootstrap replications, Maximum likelihood method, UPGMA method and Maximum Parsimony method with 1000 bootstrap replications (Supplementary Figure 1). The sequences from 2015-2016 showed similarity to Asian lineage and grouped in the same clade. These results showed that the Asian strain has caused the recent outbreak in western part of the world as reported by others (27). To study the molecular variations specific to Asian strains, Malaysian isolate (HQ234499.1; 1966) (13) was used as reference for all further analyses. Sequence comparison of structural and non-structural ZIKA virus proteins revealed several variations in the 2015-2016 genomes that are discussed in detail below. Sequence analysis of the 2015-2016 isolates with Asian genotype Structural region Year 2015 and 2016 outbreak samples (n=25) were compared against the year 1966 sequence from Malaysia. Nucleotide variations were too numerous to discuss here. With respect to amino acid variations, structural proteins showed several variations in their sequences revealing high mutational rate of the new ZIKV strains (28). Variations observed were classified into two categories, those that were seen in all 2015-2016 samples and variations that were strain-specific.
Recommended publications
  • Journal of Virological Methods Multiplex Real-Time RT-PCR For
    Journal of Virological Methods 266 (2019) 72–76 Contents lists available at ScienceDirect Journal of Virological Methods journal homepage: www.elsevier.com/locate/jviromet Multiplex real-time RT-PCR for detection and distinction of Spondweni and Zika virus T ⁎ Rochelle Rademana, Wanda Markottera, Janusz T. Paweskaa,b, Petrus Jansen van Vurena,b, a Centre of Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa b Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ARTICLE INFO ABSTRACT Keywords: Zika (ZIKV) and Spondweni viruses (SPOV) are closely related mosquito borne flaviviruses in the Spondweni Arbovirus serogroup. The co-circulation and similar disease presentation following ZIKV and SPOV infection necessitates Zika virus the development of a diagnostic tool for their simultaneous detection and distinction. We developed a one-step Spondweni virus multiplex real-time RT-PCR (ZIKSPOV) to detect and distinguish between SPOV and ZIKV by utilizing a single Flavivirus primer set combined with virus specific hydrolysis probes. The ZIKSPOV assay was compared to published virus Flaviviridae specific real-time RT-PCR assays and the limit of detection was comparable. The SPOV reference strain AR94 was multiplex Aedes detectable to 0.001 TCID50 per PCR reaction, while African lineage ZIKV (MR 766) was detectable to 0.002 TCID50 per reaction and Asian lineage ZIKV (H/PF/2013) to 0.05 TCID50 per reaction. The ZIKSPOV assay did not detect other flaviviruses, indicative of its specificity for Spondweni serogroup. The ZIKSPOV assay is a useful addition to arbovirus diagnostic and surveillance tools in areas where ZIKV and SPOV are expected to co- circulate.
    [Show full text]
  • Future Developments in Biosensors for Field-Ready Zika Virus Diagnostics Ariana M
    Nicolini et al. Journal of Biological Engineering (2017) 11:7 DOI 10.1186/s13036-016-0046-z REVIEW Open Access Future developments in biosensors for field-ready Zika virus diagnostics Ariana M. Nicolini1†, Katherine E. McCracken2† and Jeong-Yeol Yoon1,2* Abstract Since early reports of the recent Zika virus outbreak in May 2015, much has been learned and discussed regarding Zika virus infection and transmission. However, many opportunities still remain for translating these findings into field-ready sensors and diagnostics. In this brief review, we discuss current diagnostic methods, consider the prospects of translating other flavivirus biosensors directly to Zika virus sensing, and look toward the future developments needed for high-sensitivity and high-specificity biosensors to come. Keywords: Zika, Flaviviruses, Biosensors, RT-PCR, LAMP, Immunoassays Background and Central and North America, has uncovered new Amidst the recent Zika epidemic, rising public health con- insights into rare and severe effects on specific subsets cerns have led to extensive research aimed at uncovering of the population. These include a low risk of Guillain- the underlying mechanisms of Zika virus (ZIKV) infection Barré syndrome in adults, and critical risks for preg- and transmission pathways [1–3]. According to the Pan nant women, including stillbirth, restricted intrauterine American Health Organization (PAHO), autochthonous fetal growth, and microcephaly [7, 10–14]. ZIKV cases in the Americas increased from virtually none As a member of the Flavivirus genus, ZIKV shares many in early 2015 to over 170,000 confirmed and 515,000 common genetic sequences and protein structures with suspected cases by December 2016 [4].
    [Show full text]
  • The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
    The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens.
    [Show full text]
  • Spondweni Virus Causes Fetal Harm in a Mouse Model of Vertical Transmission and Is Transmitted by Aedes Aegypti Mosquitoes
    bioRxiv preprint doi: https://doi.org/10.1101/824466; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spondweni virus causes fetal harm in a mouse model of vertical transmission and is transmitted by Aedes aegypti mosquitoes Anna S. Jaeger1, Andrea M. Weiler2, Ryan V. Moriarty2, Sierra Rybarczyk2, Shelby L. O’Connor2,3, David H. O’Connor2,3, Davis M. Seelig4, Michael K. Fritsch3, Thomas C. Friedrich2,5, and Matthew T. Aliota1* 1Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities. 2Wisconsin National Primate Research Center, University of Wisconsin-Madison. 3Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison. 4Department of Veterinary Clinical Sciences, University of Minnesota, Twin Cities. 5Department of Pathobiological Sciences, University of Wisconsin-Madison. *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/824466; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Spondweni virus (SPONV) is the most closely related known flavivirus to Zika virus (ZIKV). Its pathogenic potential and vector specificity have not been well defined. SPONV has been found predominantly in Africa, but was recently detected in a pool of Culex quinquefasciatus mosquitoes in Haiti.
    [Show full text]
  • Logix Smart™ Zika Virus (ZIKV) Test
    2021 Logix Smart™ Zika Virus (ZIKV) Test ZIKV-K-004 LOGIX SMART™ ZIKV TEST CO-DIAGNOSTICS, INC. CO-DIAGNOSTICS, INC. | 2401 Foothill Dr., Ste D, Salt Lake City, UT 84109 USA Form Logix Smart™ ZIKV (ZIKV-K-004) Instructions for Use (IVD) TABLE OF CONTENTS 1 Manufacturer and Authorized Representative ..................................................................... 2 2 Intended Use ...................................................................................................................... 2 3 Product Description ............................................................................................................ 2 4 Kit Components .................................................................................................................. 3 5 Storage, Handling, & Disposal ............................................................................................ 3 6 Materials Required (not included) ....................................................................................... 3 7 Background Information ..................................................................................................... 4 8 Accessories (Not Included) ................................................................................................. 5 8.1 Thermocycler ............................................................................................................... 5 8.2 Extraction Kit ................................................................................................................ 5 9 Warnings
    [Show full text]
  • 1 Analytical Methods for Detection of Zika Virus Kai-Hung Yang1, Roger J
    Analytical methods for detection of Zika virus Kai-Hung Yang1, Roger J. Narayan1,2* Department of Material Science Engineering, North Carolina State University, Box 7907, Raleigh, NC, 27695, USA Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh NC 27695, USA Corresponding author* Corresponding author: Roger J. Narayan UNC/NCSU Joint Department of Biomedical Engineering Raleigh, NC 27695-7115 USA T: 1 919 696 8488 E: [email protected] 1 Abstract Due to the recent outbreak of the Zika virus in several regions, rapid and accurate methods to diagnose Zika infection are in demand, particularly in regions that are on the frontline of a Zika virus outbreak. In this paper, three diagnostic methods for Zika virus are considered. Viral isolation is the gold standard for detection; this approach can involve incubation of cell cultures. Serological identification is based on the interactions between viral antigens and immunoglobulin G (IgG) or immunoglobulin M (IgM) antibodies; cross reactivity with other types of flaviviruses can cause reduced specificity with this approach. Molecular confirmation, such as reverse transcription polymerase chain reaction (RTPCR), involves reverse transcription of RNA and amplification of DNA. Quantitative analysis based on real time RTPCR can be undertaken by comparing fluorescence measurements against previously developed standards. A recently developed programmable paper-based detection approach can provide low-cost and rapid analysis. These viral identification and viral genetic analysis approaches play crucial roles in understanding the transmission of Zika virus. ` 2 Introduction Zika virus (ZIKV) is an arthropod-borne virus in the genus Flavivirus and the family Flaviviridae.
    [Show full text]
  • Algorithm for Zika Virus Diagnosis, National Institute of Virology, Pune
    Algorithm for Zika virus diagnosis, National Institute of Virology, Pune Introduction Zika virus (ZIKV) is an emerging mosquito-borne pathogen first described in 1952(1), after being isolated from a sentinel rhesus macaque monkey in 1947 and a pool of Aedes africanus mosquitoes in 1948 from the Zika forest in Uganda. Since it was first reported, only a small number of cases had been described in Africa and Asia until 2007 when there was a large outbreak on Yap Island in the Federated States of Micronesia.(2,3)In October 2013, ZIKV was detected in French Polynesia affecting~10% of the total population.(4) In May 2015, the Pan American Health Organization (PAHO) issued an alert regarding the first confirmed Zika virus infections in Brazil. (CDC)Currently, outbreaks are occurring in many countries, including Columbia, Venezuela, Paraguay, EL Salvador etc. As of 28th January 2016, twenty three countries in the Americas have reported cases (WHO).Due to widespread international travel, there is risk of spread of outbreak across the world. Cases are being reported among travellers from other continents including Europe. ZIKV is an approximately 11-kb single-stranded, positive sense ribonucleic acid (RNA) virus from the Flaviviridae family,most closely related to the Spondweni virus.(Thailand) Two major lineages, African and Asian, have been identified through phylogenetic analyses. (2, 6, 7)Transmission occurs via mosquito vectors from the Aedes genus of the Culicidae family, the same mosquito that transmits dengue, chikungunya and yellow fever. .Non vector transmission including potential sexual transmission and through monkey bite are also reported. Mother to child transmission during pregnancy or during delivery is also a potential route of transmission.
    [Show full text]
  • Fatal Sickle Cell Disease and Zika Virus Infection in Girl from Colombia
    LETTERS References 1. Dick GWA, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509– 20. http://dx.doi.org/10.1016/0035-9203(52)90042-4 2. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9. http://dx.doi.org/10.3201/ eid1408.080287 3. Musso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014;20:O595–6. http://dx.doi.org/10.1111/1469-0691.12707 4. Zanluca C, de Melo VCA, Mosimann ALP, Dos Santos GIV, Dos Santos CND, Luz K. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz. 2015;110:569–72. http://dx.doi.org/10.1590/0074-02760150192 5. Olson JG, Ksiazek TG, Suhandiman, Triwibowo. Zika virus, a cause of fever in Central Java, Indonesia. Trans R Soc Trop Med Hyg. 1981;75:389–93. http://dx.doi.org/10.1016/ 0035-9203(81)90100-0 Figure. Phylogenetic tree comparing Zika virus isolate from 6. Buathong R, Hermann L, Thaisomboonsuk B, Rutvisuttinunt a patient in Indonesia (ID/JMB-185/2014; arrow) to reference W, Klungthong C, Chinnawirotpisan P, et al. Detection of Zika strains from GenBank (accession numbers indicated). The virus infection in Thailand, 2012–2014. Am J Trop Med Hyg. tree was constructed from nucleic acid sequences of 530 bp 2015;93:380–3.
    [Show full text]
  • Logix Smart Zika Virus (ZIKV) Test™
    2018 Logix Smart Zika Virus (ZIKV) Test™ ZIKV-K-004 LOGIX SMART ZIKV TEST™ CO-DIAGNOSTICS, INC. CO-DIAGNOSTICS, INC. | 2401 Foothill Dr., Ste D, Salt Lake City, UT 84109 USA Logix Smart Zika Virus Test™ (ZIKV-K-004) FRM-4359 Instructions: (Rev. -00) Document Control Procedures are done in QT9 Quality Management System 1. Manufacturer and Authorized Representative Manufacturer: Co-Diagnostics, Inc 2401 S Foothill Dr. Ste D Salt Lake City, UT 84109 Phone: +1 (801) 438-1036 Email: [email protected] Website: www.codiagnostics.com Authorized Representative: mdi Europa GmbH ZIKV-K-004 Langenhagener Str. 71 D-30855 Hannover-Langenhagen Germany Phone: +49 511 39 08 95 30 Email: [email protected] Website: www.mdi-europa.com 2. Logix Smart Zika Virus Test™ 2.1 Device Description The Logix Smart Zika Virus Test™ kit is an in vitro diagnostics medical device developed by Co-Diagnostics, Inc. The test detects presence or absence of ribonucleic acid (RNA) of Zika Virus in a single step reverse transcription real-time PCR reaction in serum or plasma, collected alongside with urine, from patients suspected of Zika fever or Zika disease during acute stages of the disease that happens between 2 to 20 days after the onset of the symptomatic or non-symptomatic infection. Logix Smart ZIKV Test™ is recommended to be tested in serum or plasma alongside with urine (Zika virus testing is essential to aid the control and spread of virus prior to pregnancy, transfusion or transplantation, or sexual relation). The Logix Smart Zika Virus Test detects the virus within 40 cycles from serum, plasma, and urine specimen.
    [Show full text]
  • Mrna Vaccines Against Flaviviruses
    Review mRNA Vaccines against Flaviviruses Clayton J. Wollner and Justin M. Richner * Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA; [email protected] * Correspondence: [email protected] Abstract: Numerous vaccines have now been developed using the mRNA platform. In this approach, mRNA coding for a viral antigen is in vitro synthesized and injected into the host leading to exoge- nous protein expression and robust immune responses. Vaccines can be rapidly developed utilizing the mRNA platform in the face of emerging pandemics. Additionally, the mRNA coding region can be easily manipulated to test novel hypotheses in order to combat viral infections which have remained refractory to traditional vaccine approaches. Flaviviruses are a diverse family of viruses that cause widespread disease and have pandemic potential. In this review, we discuss the mRNA vaccines which have been developed against diverse flaviviruses. Keywords: flavivirus; mRNA vaccines; Dengue; Zika; tick-borne encephalitis 1. Introduction Flaviviridae is a diverse family of positive sense, RNA viruses that are spread predom- inantly by arthropod vectors [1]. Outbreaks of flaviviruses across the globe have plagued humankind for centuries [2]. Even in modern times, flaviviral outbreaks can lead to global pandemics as demonstrated after the introduction and subsequent spread of West Nile virus Citation: Wollner, C.J.; Richner, J.M. into North America in 1999 and more recently, the emergence of Zika virus into the Western mRNA Vaccines against Flaviviruses. Hemisphere in 2013 [3]. One of the most successful early vaccination campaigns ever Vaccines 2021, 9, 148. https:// was against the flavivirus yellow fever virus in the 1930’s [4].
    [Show full text]
  • Spondweni Virus in Field-Caught Culex Quinquefasciatus Mosquitoes
    RESEARCH LETTERS Therefore, several studies were conducted to subdivide the 3. Lambert N, Strebel P, Orenstein W, Icenogle J, Poland GA. genotypes on the basis of detailed phylogenetic analysis Rubella. Lancet. 2015;385:2297–307. http://dx.doi.org/10.1016/ S0140-6736(14)60539-0 (7,8). We reported that a large epidemic in Japan in 2013 4. Cutts FT, Vynnycky E. Modelling the incidence of congenital might have occurred due to the transport of multiple lineages rubella syndrome in developing countries. Int J Epidemiol. of rubella virus from rubella-endemic countries (7). Accord- 1999;28:1176–84. http://dx.doi.org/10.1093/ije/28.6.1176 ing to the National Epidemiological Surveillance of Infec- 5. World Health Organization. WHO vaccine-preventable diseases: monitoring system [cited 2018 Jul 10]. http://apps.who.int/ tious Diseases (NESID) of Japan, during 2015–2017, ≈100 immunization_monitoring/globalsummary/ cases of rubella, which is a notifiable disease in Japan, were 6. Okamoto K, Mori Y, Komagome R, Nagano H, Miyoshi M, reported annually (5), and genotype 1E strains, including a Okano M, et al. Evaluation of sensitivity of TaqMan strain closely related to RVs/Osaka.JPN/41.17[1E], were de- RT-PCR for rubella virus detection in clinical specimens. J Clin Virol. 2016;80:98–101. http://dx.doi.org/10.1016/ tected. Although these strains might have been transported j.jcv.2016.05.005 from countries with endemic rubella, their origin remains 7. Mori Y, Miyoshi M, Kikuchi M, Sekine M, Umezawa M, unclear because of insufficient genomic information. Saikusa M, et al.
    [Show full text]
  • Global Fever Panel Instructions for Use
    DFA2-ASY-0004 BioFire ® Global Fever Panel Instructions for Use The Symbols Glossary is provided on Page 42 of this booklet. For In Vitro Diagnostic Use Manufactured by BioFire Defense, LLC 79 West 4500 South, Suite 14 Salt Lake City, UT 84107 USA TABLE OF CONTENTS INTENDED USE ................................................................................................................................ 1 SUMMARY AND EXPLANATION OF THE TEST ............................................................................ 1 Summary of Detected Organisms ................................................................................................. 2 Bacteria ...................................................................................................................................... 2 Viruses ....................................................................................................................................... 2 Protozoa ..................................................................................................................................... 2 PRINCIPLE OF THE PROCEDURE .................................................................................................. 4 MATERIALS PROVIDED .................................................................................................................. 5 MATERIALS REQUIRED BUT NOT PROVIDED ............................................................................. 5 WARNINGS AND PRECAUTIONS ..................................................................................................
    [Show full text]