Does Robust Estimation Change Conclusions from Economic Data?
Total Page:16
File Type:pdf, Size:1020Kb
DOES ROBUST ESTIMATION CHANGE CONCLUSIONS FROM ECONOMIC DATA? Richard i-lndrew Simson B.Comm. Honours (Eco~lornics)University of Natal M.Cornm. University of Natal A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOROF PHILOSOPHY in the Department of Economics @ ltichard Andrew Simson 1993 SIMON FRASER UNIVERSITY July 1993 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. APPROVAL , Name: Richard A. Simson Degree: Ph.D. (Economics) Title of Thesis: Does Robust Estimation Change Conclusions From Economic Data? Examining Committee Chairman: Dr. Lawrence A. Boland Dr. pet& E. ~enne&y Senior Supervisor i Sr. Stephen T. Easton Supervisor Dr. R. A. ~onr Department Economics Internal/External Examiner Dr. Lonnie J. Magee Associate Professor Department of Economics McMaster University External Examiner Date Approved: &L\/ lZ 1993 PARTIAL COPYRIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I hrther agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of Thesis/Project/Extended Essay Does Robust Estimation Change Conclusions From Economic Data? Author: (signature) Richard A. Simson (name) July 12, 1993 (date) Abstract Using ninety economic data sets from forty-four publications, robust estimates are compared with the original ordinary least squares' results. Robust methods, insen- sitive to large errors, have recei~reda great deal of attention by statisticians and econorrietricians; economists have been exhorted to use them. Do these robust meth- ods make a difference with economic data, in terms of the estimated coefficients. the results of hypothesis tests, or the quality of forecasts? The results of this thesis sug- gest that on the whole robust met hods do make a difference, albeit more so on some criteria than on others. Forecasting differences are not great, for example, but hy- pothesis testing differences are large enough to be of special concern. This result led to an extension of the thesis, examining the quality of the standard error estimates produced by popular econornetrics packages. This extension included the use of ran- domization tests and Monte Carlo work. Results indicate some methods in common use are markedly inferior to others and should be avoided. Acknowledgements This thesis would not have been possible without the support of Kimberley Sinlson. Contents ... Abstract ..................................... 111 hcknow ledgements ............................... iv ... List of Tables .................................. v111 List of Figures .................................. X 1 Introduction ................................ 1 1.1 The Purpose of the Thesis .................... l 1.2 A View of the Literature ..................... 2 1.3 New Avenues of Research .................... -I 1.4 Why be Concerned with Robust Regression? .......... 9 1.4.1 Introduction ...................... 9 1.4.2 Some Quotations Supporting R.obust Methods .... 10 1.4.3 Summary ........................ 15 1.5 Some Prior Work .......................... 16 1.5.1 Introduction ...................... 16 1.5.2 'Two important studies ................. 17 1.5.3 The Other Studies ................... 20 1.5.4 Least Median Squares ................. 25 1.5.5 Surrlrnary ........................ 25 1.5.6 What; is to be done? .................. 26 2 Robust Estimators ............................. 27 2.1 Introduction ............................. 27 2.2 Empirical Work In Economics .................. 25 2.3 Properties of Ordinary Least Squares .............. 28 2.4 Some Robust Estimators ..................... 30 2.5 M-Estimators ........................... 31 2.5.1 M-Estimators ...................... 31 2.5.2 Three M-Estimators .................. 33 2.5.3 The Estirnation Process ................ 35 2.5.4 Hypothesis Testing ................... 38 2.5.5 Monte Carlo ...................... 43 2.5.6 So Which M-Estimator? ................ 44 2.6 L-Estimators ........................... 45 2.6.1 Regression Quantiles .................. 46 2.7 Trimmed Least Squares ..................... 51 2.8 Summary and conclusion .................... 52 3 Criteria to Compare Robust to Least Squares ............. 53 3.1 Criteria for Comparing Estimates ................ 53 3.1 .1 Introduction ...................... 53 3.1.2 The Fourteen Criteria ................. 55 3.1.3 Sample Sizes ...................... 69 4 Results ................................... 71 4.1 Introduction ............................ 71 4.2 The Data ............................. 72 4.3 Results for the thirteen criteria ................. 75 4.4 Criterion I ............................. 75 4.5 Criterion II ............................ 77 4.6 Criterion 111 ............................ 77 4.7 Criterion IV ............................ 79 4.8 Criterion V ............................ 81 4.9 Criterion V1 ............................ 84 4.10 Criterion VII and VIII ...................... 88 4.1 1 Criterion IX ............................. 92 4.12 Criterion X ............................ 94 4.13 Criterion XI ............................ 95 4.14 Criterion XI1 ........................... 99 4.15 Criterion XI11 ........................... 100 4.16 Criterion XIV ........................... 101 4.17 Outliers in the Studies' Data Sets ................ 105 4.17.1 The Extent of Outliers ................. 107 4.17.2 R LOGIT Analysis of Outliers ............ 108 4.18 Conclusions ............................ 112 4.19 Studies ............................... 115 5 Afraid of Heights: A Monte Carlo Study ................ 121 5.1 Introduction ............................ 121 5.2 A Proposed Monte Carlo Study ................. 122 5.3 Steps of the i'vlonte Carlo Study ................. 123 5.4 The SHAZAM Programme .................... 125 5.5 Monte Carlo Results ....................... 127 5.6 More Monte Carlo Results .................... 131 6 Summary arid Conclusions ........................ 136 Bibliography .................................. 151 vii List of Tables 2.1 An Example of Raw and Winsorized Data ............... 37 3.1 Sample Size-Coefficients ......................... 70 3.2 Sample Size-Regressions ......................... 70 3.3 Equations Forecast ............................ 70 4.1 Rounding ................................. 73 4.2 Types of Replication ........................... 75 4.3 Percentage Changes of Robust Slope Coefficients Changing By More than Stated ................................ 76 4.4 Percentage Changes More Than Thirty and Fifty ........... 78 4.5 Changes More Than OLS Standard Deviation ............. 79 4.6 Changes more than OLS standard deviations .............. 80 4.7 Standard Deviation ............................ 53 4.8 ,y vest Results .............................. 84 4.9 Test Results: random coef ...................... 85 4.10 Wilcoxon Signed Ranks Test ....................... 87 4.11 Siegel-Tukey Alternating Ranks Test .................. 87 4.12 P~rcentageof robust estimators with a lower estimated variance ... 89 4.13 Average Percentage Change when robust estimated variance lower . 90 4.14 Average Percentage Change when least square's cstirnated variance lower 90 4.15 Percentage when robust forecast beats least squares (me(di)an percent- age error criterion) ............................ 93 ... Vlll 4.16 Average improvement in MAPE whe11 robust (OLS) forecast beats OLS (robust) .................................. 93 4.17 Average improvement in MedianAPE when robust (OLS) forecast beats OLS (robust) ............................... 94 4.18 Percentage Becoming S (1ns)ignificant .................. 97 4.10 Percentage Becoming Significant and Insignificant ........... 98 4.20 PercentageWithBiggerP-Value ..................... 99 4.21 Average and Median Percentage Change When Bigger P-Value .... 100 4.22 Average and Median Percentage Change When Smaller P-Value ... 4.23 Average and Median Percentage Point Change When Bigger P-Value 4.24 Average and Median Percentage Point Change When Smaller P-Vdue 4.25 Percentage Bigger P-Value ........................ 4.26 Percentage Smaller P-Value ....................... 4.27 Percentage Bigger P-Value ........................ 4.28 Percentage Smaller P-Value ....................... 4.29 Outliers in Data Sets: Part One ..................... 4.30 Outliers in Data Sets: Part Two ..................... 4.31 Results from the Logit Analysis ..................... 5.1 Monte Carlo Results-Benderley and Zwick ............. 127 5.2 Monte Carlo Results-Barkley ...................... 130 5.3 "Robilst" Hypothesisrkst Results .................... 131 5.4 Monte Carlo Results-Benderley and Zwick-Normal ......... 104 5.5 Monte Carlo Results-Barkley-Nor~nal ................. 134 5.6 Monte Carlo. Results-Benderley and Zwick-Mixed (.75) ...... 134 5.7 Monte Carlo Results-Barkley-Mixed (0.75) .............. 135 5.8 Monte Carlo R.esults.Benderley and Zwick-Slash .......... 135 5.9 Monte Carlo R.esults.Barkley.Slash