US Outer Continental Shelf Renewable Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planning for Wind Energy
Planning for Wind Energy Suzanne Rynne, AICP , Larry Flowers, Eric Lantz, and Erica Heller, AICP , Editors American Planning Association Planning Advisory Service Report Number 566 Planning for Wind Energy is the result of a collaborative part- search intern at APA; Kirstin Kuenzi is a research intern at nership among the American Planning Association (APA), APA; Joe MacDonald, aicp, was program development se- the National Renewable Energy Laboratory (NREL), the nior associate at APA; Ann F. Dillemuth, aicp, is a research American Wind Energy Association (AWEA), and Clarion associate and co-editor of PAS Memo at APA. Associates. Funding was provided by the U.S. Department The authors thank the many other individuals who con- of Energy under award number DE-EE0000717, as part of tributed to or supported this project, particularly the plan- the 20% Wind by 2030: Overcoming the Challenges funding ners, elected officials, and other stakeholders from case- opportunity. study communities who participated in interviews, shared The report was developed under the auspices of the Green documents and images, and reviewed drafts of the case Communities Research Center, one of APA’s National studies. Special thanks also goes to the project partners Centers for Planning. The Center engages in research, policy, who reviewed the entire report and provided thoughtful outreach, and education that advance green communities edits and comments, as well as the scoping symposium through planning. For more information, visit www.plan- participants who worked with APA and project partners to ning.org/nationalcenters/green/index.htm. APA’s National develop the outline for the report: James Andrews, utilities Centers for Planning conduct policy-relevant research and specialist at the San Francisco Public Utilities Commission; education involving community health, natural and man- Jennifer Banks, offshore wind and siting specialist at AWEA; made hazards, and green communities. -
U.S. Offshore Wind Power Economic Impact Assessment
U.S. Offshore Wind Power Economic Impact Assessment Issue Date | March 2020 Prepared By American Wind Energy Association Table of Contents Executive Summary ............................................................................................................................................................................. 1 Introduction .......................................................................................................................................................................................... 2 Current Status of U.S. Offshore Wind .......................................................................................................................................................... 2 Lessons from Land-based Wind ...................................................................................................................................................................... 3 Announced Investments in Domestic Infrastructure ............................................................................................................................ 5 Methodology ......................................................................................................................................................................................... 7 Input Assumptions ............................................................................................................................................................................................... 7 Modeling Tool ........................................................................................................................................................................................................ -
Ecological Monitoring and Mitigation Policies and Practices at Offshore Wind Installations in the United States and Europe
Ecological Monitoring and Mitigation Policies and Practices at Offshore Wind Installations in the United States and Europe August 2020 Michael C. Allen, Ph.D., Postdoctoral Research Associate, Department of Ecology, Evolution, and Natural Resources, Rutgers University, Matthew Campo, Senior Research Specialist, Environmental Analysis & Communications Group, Rutgers University Prepared for the New Jersey Climate Change Alliance (https://njadapt.rutgers.edu/). Working Group Members: John Cecil, New Jersey Audubon Tim Dillingham, American Littoral Society Patty Doerr, The Nature Conservancy of New Jersey Russell Furnari, PSEG Kevin Hassell, New Jersey Department of Environmental Protection Anthony MacDonald, Urban Coast Institute at Monmouth University Martha Maxwell-Doyle, Barnegat Bay Partnership David Mizrahi, Ph.D., New Jersey Audubon Technical Reviews and Acknowledgments Joseph Brodie, Ph.D. Jeanne Herb Marjorie Kaplan, Dr.P.H. Josh Kohut, Ph.D. Richard Lathrop, Ph.D. Julie Lockwood, Ph.D. Douglas Zemeckis, Ph.D. https://doi.org/doi:10.7282/t3-wn1p-cz80 1 ABSTRACT Offshore wind energy is poised to expand dramatically along the eastern United States. However, the promise of sustainable energy also brings potential impacts on marine ecosystems from new turbines and transmission infrastructure. This whitepaper informs government officials, scientists, and stakeholders in New Jersey about the current policies and monitoring methods other jurisdictions use to monitor potential ecological impacts from offshore wind installations. We reviewed policy documents in the eastern U.S. and Europe, reviewed the scientific literature, and conducted stakeholder interviews in Spring 2020. We found: 1. Short-term (3-5 year) project-specific efforts dominate coordinated regional and project life duration ecological monitoring efforts at offshore wind farms in North America and Europe. -
2019 Market Report
US OFFSHORE WIND MARKET UPDATE & INSIGHTS US OFFSHORE WIND CAPACITY GENERATION The US Department of the Interior’s Bureau of Ocean and Energy Management (BOEM), has auctioned 16 US offshore wind energy areas (WEAs) designated in federal waters for offshore wind development. Each area has been leased to a qualified offshore wind developer. The ar- eas are located along the East Coast from North Carolina to Massachusetts and represent a total potential capacity of 21,000 Megawatts (MWs) of offshore wind power generation. HISTORY OF BOEM AUCTIONS AND LEASES YEAR LEASE # LESSEE STATE ACREAGE BID MW* NEXT 2012 0482 GSOE I DE 70,098 NA NA SAP *Reading volumes, some earlier estimates 2013 0486 Deepwater Wind NE RI/MA 97,498 $3,838,288 3400 TTL COP of capacity likely used 2013 0487 Deepwater Wind NE RI/MA 67,252 $3,838,288 3400 TTL FDR different calculations. 2013 0483 VA Electric & Power Co. VA 112,799 $1,600,000 2000 COP In all cases, capacity 2014 0490 US Wind MD 79,707 $8,701,098 1450 COP calculations should be considered estimates. 2015 0501 Vineyard Wind MA 166,886 $166,886 See Below FDR 2015 0500 Bay State Wind MA 187,523 $281,285 2000 TTL COP 2016 0498 Ocean Wind NJ 160,480 $880,715 See Below COP 2016 0499 EDFR Development NJ 183,353 $1,006,240 3400 TTL SAP 2017 0512 Equinor Wind US NY 79,350 $42,469,725 1000 COP 2017 0508 Avangrid Renewables NC 122,405 $9,066,650 1486 SAP 2018 0519 Skipjack Offshore Energy DE 26,332 Assigned NA SAP 2018 0520 Equinor Wind US MA 128,811 $135,000,000 1300 EXEC 2018 0521 Mayflower Wind Energy MA 127,388 $135,000,000 1300 EXEC 2018 0522 Vineyard Wind MA 132,370 $135,000,000 1500 EXEC EXEC—Lease Execution SAP—Site Assessment Plan COP—Construction & Operations Plan FDR—Facility Design Report @offshorewindus / BUSINESS NETWORK FOR OFFSHORE WIND / offshorewindus.org 1 STATE 2018 2019 MARKET GROWTH The US Offshore Wind market currently stands VIRGINIA 12 12 at 16,970 MWs and is a subset of the total US MARYLAND 366 366 potential generation capacity. -
Offshore Wind Summit September 25, 30, and October 7
Offshore Wind Summit September 25, 30, and October 7, 2020 National Governors Association Center for Best Practices & The Embassy of Denmark 1 Introductory Remarks Jessica Rackley, Energy & Environment Program Director, NGA Center for Best Practices Michael Guldbrandtsen, Counselor, Embassy of Denmark Thank You to our Sponsors States with Clean Energy Goals Source: NGA, 2020 Offshore Wind Technical Potential Source: NREL, 2016 Offshore Wind Energy Resource Assessment for the United States Today’s Virtual Meeting: Zoom Controls The Zoom menu bar appears at the If you don’t see the menu bar, move your bottom of the Zoom window once the meeting begins. mouse slightly and the bar will appear. Chat your questions Introductory Remarks Michael Guldbrandtsen Counselor Embassy of Denmark Welcome Remarks Tim Blute Director NGA Center for Best Practices Introduction to the Day – Offshore Wind Update Thomas Brostrøm CEO Ørsted North America, Offshore Offshore Wind Summit Thomas Brostrøm, CEO Ørsted North America, Offshore Offshore Wind Update September 25, 2020 Ranked most sustainable company in the world 2 Significant transformation of Ørsted over the past decade 1 Note 1: Figures taken from Ørsted’s Annual Report 2019. Excluding Radius (power distribution business which was divested during 2019) Note 2: ROCE target for 2019-2025 3 Note 3: International share calculated based on Group EBITDA excl. divestments and miscellaneous un-allocated costs totalling 16 DKKbn The first major energy company to reach net-zero emissions in its energy generation – We will become carbon neutral by 2025. – This will make Ørsted the first major energy company to reach net-zero emissions in its energy generation – far ahead of science-based decarbonization targets for limiting global warming to 1.5°C. -
Perceived Risk and Response to the Wind Turbine Ice Throw
PERCEIVED RISK AND RESPONSE TO THE WIND TURBINE ICE THROW HAZARD: COMPARING COMMUNITY STAKEHOLDERS AND OPERATIONS AND MAINTENANCE PERSONNEL IN TWO REGIONS OF TEXAS by Greg Klaus, B.S., M.A.G. A dissertation submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a major in Environmental Geography May 2017 Committee Members: Denise Blanchard-Boehm, Chair Richard Dixon Richard Earl Todd Moore COPYRIGHT by Greg Klaus 2017 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Greg Klaus, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. DEDICATION The author would like to dedicate this dissertation to the men and women who work in the wind energy industry who at times put themselves in harm’s way in order to provide for their families and also supply this great nation with a clean, renewable source of electricity. ACKNOWLEDGEMENTS The author would like to thank his committee chair Dr. Denise Blanchard for all of her support and guidance throughout the dissertation process; as well as thank committee members Dr. Richard Dixon, Dr. Richard Earl, and Dr. -
U.S. Offshore Wind Market Report & Insights 2020
RAMPION OFFSHORE WIND FARM — COURTESY OF ATKINS THE BUSINESS NETWORK FOR OFFSHORE WIND U.S. OFFSHORE WIND MARKET REPORT & INSIGHTS 2020 MEMBERS ONLY The Business Network for Offshore Wind’s2020 U.S. Offshore Wind Market and Insights offers an analysis of federal and state government activity to better understand how it may affect your business planning and the industry holistically. The federal government has turned its attention to the burgeoning industry to offer more regulation. Congress and federal agencies beyond the Department of Interior’s Bureau of Ocean and Energy Management and U.S. Department of Energy are now affecting how the offshore wind industry will operate into the future. This report also discusses how some of the challenges facing offshore wind are being addressed. The health and safety of workers – whether onshore or offshore – are a paramount tenet within the industry. Particular- ly at this time, the offshore industry remains proactive in its response to the coronavirus epidemic, having put in place telework directives, eliminating unnecessary travel, and following government guidelines. As a result of these protocols, Europe has reported minimal disruptions to the supply chains and the 15 offshore wind projects in the U.S., remain in the planning and development stages. It is too soon to know exactly how the global COVID-19 epidemic disruption will affect the U.S. offshore wind in- dustry. Our main concern centers around the economic hardship a long-term shutdown and recession would place on secondary and tertiary U.S. suppliers. It is important to point out, however, that there is almost 10GWs of U.S. -
WIND ENERGY Renewable Energy and the Environment
WIND ENERGY Renewable Energy and the Environment © 2009 by Taylor & Francis Group, LLC WIND ENERGY Renewable Energy and the Environment VaughnVaughn NelsonNelson CRC Press Taylor Si Francis Group BocaBoca RatonRaton LondonLondon NewNewYor Yorkk CRCCRC PressPress isis an an imprintimprint ofof thethe TaylorTaylor && FrancisFrancis Group,Group, anan informa informa businessbusiness © 2009 by Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-7568-7 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. -
Usa Wind Energy Resources
USA WIND ENERGY RESOURCES © M. Ragheb 2/7/2021 “An acre of windy prairie could produce between $4,000 and $10,000 worth of electricity per year.” Dennis Hayes INTRODUCTION Wind power accounted for 6 percent of the USA’s total electricity generation capacity, compared with 19 percent for Nuclear Power generation. A record 13.2 GWs of rated wind capacity were installed in 2012 including 5.5 GWs in December 2012, the most ever for a single month. The total rated wind capacity stands at about 60 GWs. Utilities are buying wind power because they want to, not because they have to, to benefit from the Production Tax Credit PTC incentive. The credit has been extended for a year to cover wind farms that start construction in 2013. Previously it only covered projects that started working by the expiration date. Asset financing for USA wind farms was $4.3 billion in the second-half compared with $9.6 billion in the first six months of 2012. Component makers are the General Electric Company (GE), Siemens AG, Vestas AS, Gamesa Corp Tecnologica SA and Clipper Windpower Ltd., which is owned by Platinum Equity LLC. Equipment prices for wind have dropped by more than 21 percent since 2010, and the performance of turbines has risen. This has resulted in a 21 percent decrease in the overall cost of electricity from wind for a typical USA project since 2010. From 2006 to 2012 USA domestic manufacturing facilities for wind turbine components has grown 12 times to more than 400 facilities in 43 states. -
Wind Energy: Lake Michigan Offshore... Advisory Council
Lake Michigan Offshore Wind Energy Report Prepared by the Illinois Department of Natural Resources June 2012 Lake Michigan Offshore Wind Energy Advisory Report 2012 Preface From the Director of the Department of Natural Resources Offshore wind power in Lake Michigan is both Marc Miller a great opportunity and challenge for Illinois. Director Successful development of this industry in the Great Lakes will mean a stronger economy with new high value manufacturing jobs and Investment. It also means a cleaner environment with reduced carbon and mercury emissions. The Great Lakes are a jewel that we are committed to preserving for this and future generations, and across the globe offshore wind power is being developed responsibly and protective of our natural resources. Exciting breakthroughs in technology are occurring that will reduce or eliminate many of the significant cost challenges, and it is our hope that this study will provide valuable guidance to the Governor’s office and the legislature as we explore this new opportunity. From the Mayor of Waukegan The development of offshore wind energy in Robert Sabonjian Illinois will augment existing regional power Mayor of Waukegan sources as part of the state’s renewable-energy portfolio and could provide power for up to 100,000 homes in the region. This project will also serve as a major economic development opportunity that could create hundreds of jobs. Lake Michigan Offshore Wind Energy Advisory Report 2012 Acknowledgments Development of this report is due in large part to the leadership of State Representative Robyn Gabel who introduced and helped pass House Bill 1558, officially creating the Lake Michigan Offshore Wind Energy Advisory Council Act. -
ORDER NO. 89622 Skipjack Offshore Energy, LLC's Qualified Offshore Wind Project's Compliance with Conditions Approved in 20
ORDER NO. 89622 Skipjack Offshore Energy, LLC’s Qualified * BEFORE THE Offshore Wind Project’s Compliance with * PUBLIC SERVICE COMMISSION Conditions Approved in 2017 * OF MARYLAND * _______________ * * Case No. 9629 * _________________________________ _______________ Issue Date: August 20, 2020 ORDER APPROVING TURBINE SELECTION I. Procedural History 1. On May 11, 2017, pursuant to the provisions of the Maryland Offshore Wind Energy Act of 2013, the Commission issued Order No. 88192, which authoriZed the issuance of offshore wind renewable energy credits (“ORECs”) for two offshore wind projects—the 248 MW U.S. Wind, Inc. project and the 120 MW Skipjack Offshore Energy, LLC (“Skipjack”) project that is the subject of the present proceeding (“the Project”).1 In its November 30, 2016 Application for ORECs, Skipjack stated that it had selected the Siemens 8 MW offshore wind turbine for developing its Project’s design basis.2 However, Skipjack noted that its selection of a wind turbine was subject to 1 Case No. 9431, In the Matter of the Application of U.S. Wind, Inc. and Skipjack Offshore Energy, LLC for a Proposed Offshore Wind Project(s) Pursuant to the Maryland Offshore Wind. Energy Act of 2013, Order No. 88192. On November 18, 2019, the Commission granted Skipjack’s Motion to Bifurcate Case No. 9431 and established separate dockets for the Skipjack and U.S. Wind projects. Those new dockets are Case No. 9628, U.S. Wind, Inc.’s Qualified Offshore Wind Project’s Compliance with Conditions Approved in 2017; and Case No. 9629, Skipjack Offshore Energy, LLC’s Qualified Offshore Wind Project’s Compliance with Conditions Approved in 2017. -
National Offshore Wind Energy Grid Interconnection Study Executive Summary
National Offshore Wind Energy Grid Interconnection Study Executive Summary DOE Award No. EE-0005365 ABB, Inc. 12040 Regency Pkwy. Suite 200 Cary, NC 27518-7708 Project Period: 10/11 – 04/14 Authors: John P. Daniel Dr. Shu Liu Dr. Eduardo Ibanez (Principal Investigator) ABB, Inc. National Renewable Energy Laboratory ABB, Inc. 919-856-2473 303-384-6926 940 Main Campus Dr. [email protected] [email protected] Raleigh, NC 27606 919-856-3306 [email protected] Ken Pennock Dr. Gregory Reed Spencer Hanes AWS Truepower University of Pittsburgh Duke Energy 518-213-0044 412-383-9862 704-382-4560 [email protected] [email protected] [email protected] July 30, 2014 ACKNOWLEDGMENTS This report is based on work supported by the U.S. Department of Energy (DOE) under Award No. EE-00005365. The authors wish to express appreciation for the kind support from DOE and the many industry leaders that have contributed through direct input and comment on the work as it has progressed. In particular, we would like to thank the study’s technical review committee (TRC) for their tremendous input and support for this work. Representatives from utilities, regional system operators, government, and the wind industry comprised the TRC. Technical Review Committee American Wind Energy Association Offshore Wind Development Coalition Chris Long Doug Pfeister Bureau of Ocean Energy Management PJM Casey Reeves Scott Baker Ken Schuyler Electric Reliability Council of Texas U.S. Department of Defense Cathey Carter Louis Husser ISO-New England U.S. Department of Energy Jon Black Charlton Clark Rich Kowalski Brad Ring Melissa Callaway National Renewable Energy Laboratory Xero Energy Limited Aaron Bloom Jeff Fodiak Dennis Elliott Helen Snodin Study Team ABB, Inc.