Cells Expression in Murine Dendritic Cells and B Differential Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Cells Expression in Murine Dendritic Cells and B Differential Regulation Differential Regulation of CCL22 Gene Expression in Murine Dendritic Cells and B Cells This information is current as Hormas Ghadially, Xiao-Lan Ross, Claudia Kerst, Jun Dong, of September 24, 2021. Angelika B. Reske-Kunz and Ralf Ross J Immunol 2005; 174:5620-5629; ; doi: 10.4049/jimmunol.174.9.5620 http://www.jimmunol.org/content/174/9/5620 Downloaded from References This article cites 48 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/174/9/5620.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Regulation of CCL22 Gene Expression in Murine Dendritic Cells and B Cells1 Hormas Ghadially,2 Xiao-Lan Ross, Claudia Kerst, Jun Dong, Angelika B. Reske-Kunz, and Ralf Ross3 The activated T cell-attracting CC chemokine CCL22 is expressed by stimulated B cells and mature dendritic cells (DC). We have cloned and sequenced the complete mouse gene, including 4 kb of the 5؅-flanking promoter region, and detected two distinct sites -for initiation of transcription by 5؅-RACE. Reporter gene assays indicate that the promoter reflects the specificity of the endog enous gene. Within the proximal promoter region, we identified potential binding sites for NF-␬B, Ikaros, and a putative GC box. All three regions bind proteins. The NF-␬B site was shown to specifically bind NF-␬B subunits p50 and p65 from nuclear extracts of LPS-stimulated B cells, B cell line A20/2J, TNF-␣-stimulated bone marrow-derived DC, and DC line XS106. Furthermore, promoter activity was affected by targeted mutagenesis of the NF-␬B site and transactivation with p50 and p65. The region Downloaded from harboring the putative Ikaros site contributes to promoter activity, but the binding protein does not belong to the Ikaros family. The GC box was shown to specifically bind Sp1 using extracts from LPS-stimulated B cells and A20/2J but not from DC and DC line XS106. Additionally, Sp1 transactivated the promoter in A20/2J but not in XS106 cells, and mutation of the Sp1 site dimin- ished transactivation. Furthermore, binding of the protein complex at the GC box is required for NF-␬B activity, and the spatial alignment of the binding sites is of critical importance for promoter activity. Thus, identical and distinct proteins contribute to expression of CCL22 in DC and B cells. The Journal of Immunology, 2005, 174: 5620–5629. http://www.jimmunol.org/ hemokines are a group of functionally and structurally cell-derived chemokine-1 or DC and B cell-derived chemokine related small proteins that are critically important in ini- (6–9). CCL22 has been shown to play an important role in C tiating and controlling the homing and migration of leu- various diseases and mouse disease models. For example, ele- kocytes (reviewed in Refs. 1 and 2). Other functions of individual vated levels of CCL22 have been found in affected tissue of chemokines or chemokine receptors include, e.g., the regulation of patients suffering from atopic dermatitis (10), atopic asthma angiogenesis (3) and hematopoiesis (4). Based on the relative po- (10), and contact hypersensitivity (11). Furthermore, CCL22 sition of cysteine residues, four families of chemokines are distin- has been shown to be critically involved in mouse models of by guest on September 24, 2021 guishable, namely CXC (␣), CC (␤), CX3C (␦), and C (␥). The allergen-induced lung inflammation (12), atopic dermatitis (13), genes of most of the CXC, as well as the CC chemokines, are and septic peritonitis (14). clustered and show a similar exon/intron structure, hinting at du- The major function of CCL22 appears to be the induction of plication of common ancestor genes during evolution. For most chemotactic migration of activated T cells (7–9, 15), predomi- chemokines, homologues have been identified in mice and hu- nantly of the Th2 type (16) and of CD4ϩCD25ϩ regulatory T cells 4 mans, but there are exceptions such as the dendritic cell (DC) - (17), through its specific receptor CCR4. However, another as yet chemokine 1 (no mouse homologue) (5) and IL-8 (no clear-cut unidentified receptor has also been implicated (18, 19). The murine murine homologue), suggesting relatively recent evolutionary re- CCL22 is expressed by activated B lymphocytes and DC (8, 9). arrangements and differences in the equipment of the immune sys- Murine epidermal Langerhans cells (LC), an exceptionally homo- tem of mice and humans. geneous population of immature DC, produce CCL22 mRNA only The CCL22 is present in both mice and humans. In humans, upon maturation (9), whereas other myeloid DC transcribe CCL22 CCL22 is also referred to as macrophage-derived chemokine or constitutively (8). Epidermal LC and other immature DC represent stimulated T cell chemotactic protein-1 and in mice as activated B sentinel cells of the immune system. Activation, e.g., by inflam- matory stimuli, induces maturation into the most efficient APC known, which is outstanding in activating naive T cells (reviewed Clinical Research Unit Allergology, Department of Dermatology, Johannes Guten- in Ref. 20). Applying a differential screening approach, we iden- berg-University, Mainz, Germany tified numerous genes differentially expressed during matura- Received for publication July 1, 2004. Accepted for publication January 25, 2005. tion of LC (21, 22). We used regulatory sequences of one of The costs of publication of this article were defrayed in part by the payment of page these genes, namely the actin-bundling protein fascin, to tran- charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. scriptionally target DC (23, 24). Furthermore, the CCL22 gene 1 This work was supported by the Deutsche Forschungsgemeinschaft, SFB548. was identified in this screening as the most abundantly ex- 2 Current address: Department of Vascular Biology and Thrombosis Research, Med- pressed gene induced during maturation of murine epidermal ical University of Vienna, Vienna, Austria. LC (9). The high expression level and the tight regulation of 3 Address correspondence and reprint requests to current address: Dr. Ralf Ross, expression, as indicated by the stage specificity, prompted us to Justus-Liebig-Universita¨t Giessen, Winchester Str. 2, D-35394 Giessen, Germany. isolate the gene and characterize the regulatory elements me- E-mail address: [email protected] diating expression in DC and B cells. Interestingly, DC and B 4 Abbreviations used in this paper: DC, dendritic cell; LC, Langerhans cell; BM-DC, bone marrow-derived DC; ORF, open reading frame; UTR, untranslated region; cells use—at least in part—the same promoter elements but EF1␣, elongation factor 1␣1. different protein complexes are formed. Copyright © 2005 by The American Association of Immunologists, Inc. 0022-1767/05/$02.00 The Journal of Immunology 5621 Materials and Methods hybridizing with mouse CCL22 cDNA probe were identified by colony Animals filter hybridization. BALB/cJ mice were bred in the Central Animal Core Facility of the University DNA sequencing and sequence analysis of Mainz under specified pathogen-free conditions. Mice were used at 2–5 mo Nucleotide sequences were determined by cycle sequencing using the ABI of age. PRISM Dye Termination Cycle Sequencing Ready Reaction kit as recom- mended and analyzed on a PE 373A DNA sequencer (PerkinElmer). GC- Cells rich DNA templates were linearized, heat-denatured (98°C for 5 min) and Epidermal cell suspensions were prepared from pelts and used for LC mixed with 5% (v/v) DMSO before sequencing. enrichment either directly or following in vitro cultivation for 3 days as Potential transcription factor binding sites were identified by MatInspec- ͗ ͘ described previously (21). LC were enriched from epidermal cell suspen- tor V 2.2 ( http://transfac.gbf.de ). Transcription factors mentioned in the sions by immunomagnetic separation with Dynabeads M-450 (Dynal Bio- text are named according to the first corresponding publication. d,b d tech) loaded with anti-MHC class II mAb 2G9 (anti-mouse I-A , I-E , rat Construction of CCL22 promoter reporter gene plasmids IgG2a as described previously; Ref. 21). MHC class II-positive, bead-cou- pled LC and cells without attached beads were enumerated using a To assess activity of the CCL22 promoter, a fragment spanning a sequence Neubauer hemocytometer. A purity of ϳ92–95% was obtained as deter- ϳ4 kb long containing part of the 5Ј-nontranscribed region and the com- mined by the ratio of bead-rosetted to nonrosetted cells. Cell viability, plete 5Ј-untranslated region (UTR) was subcloned into promoterless firefly determined by trypan blue exclusion, was Ͼ95%. luciferase expression vector pGL3-Basic (Promega), resulting in reporter Bone marrow-derived DC (BM-DC) were cultured as previously de- construct pGL-CCL22. Correct orientation was confirmed by sequencing scribed (25) with modifications (26), and maturation was induced by add- with vector-specific primers (RVprimer3 and GLprimer2; Promega). 5Ј- ing either 50 ng/ml TNF-␣ (R&D Systems) or 1 ␮g/ml LPS (Sigma- Deletion constructs were obtained by restriction and religation or by nested Aldrich).
Recommended publications
  • T Cell Binding to Activated Dendritic Cells Cutting Edge
    Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang and Sam T. Hwang This information is current as J Immunol 2001; 167:4791-4795; ; of September 27, 2021. doi: 10.4049/jimmunol.167.9.4791 http://www.jimmunol.org/content/167/9/4791 Supplementary http://www.jimmunol.org/content/suppl/2001/10/11/167.9.4791.DC1 Downloaded from Material References This article cites 32 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/167/9/4791.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. ● Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang, and Sam T. Hwang1 DC. In the periphery, activated, Ag-bearing DC may bind to cog- The binding of a T cell to an Ag-laden dendritic cell (DC) is a nate effector memory T cells (mTC).
    [Show full text]
  • Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
    Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation.
    [Show full text]
  • S41467-017-02610-0.Pdf
    ARTICLE DOI: 10.1038/s41467-017-02610-0 OPEN Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours Adama Sidibe 1,4, Patricia Ropraz1, Stéphane Jemelin1, Yalin Emre 1, Marine Poittevin1, Marc Pocard2,3, Paul F. Bradfield1 & Beat A. Imhof1 1234567890():,; Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ inter- mediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies. 1 Department of Pathology and Immunology, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. 2 Department of Oncologic and Digestive Surgery, AP-HP, Hospital Lariboisière, 2 rue Ambroise Paré, F-75475 Paris cedex 10, France. 3 Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965, 49 boulevard de la Chapelle, F-75475 Paris cedex 10, France. 4Present address: Department of Physiology and Metabolism, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
    [Show full text]
  • Mechanism of Macrophage-Derived Chemokine/CCL22 Production by Hacat Keratinocytes
    C Yano, et al Ann Dermatol Vol. 27, No. 2, 2015 http://dx.doi.org/10.5021/ad.2015.27.2.152 ORIGINAL ARTICLE Mechanism of Macrophage-Derived Chemokine/CCL22 Production by HaCaT Keratinocytes Chizuko Yano, Hidehisa Saeki1, Mayumi Komine2, Shinji Kagami3, Yuichiro Tsunemi4, Mamitaro Ohtsuki2, Hidemi Nakagawa Department of Dermatology, The Jikei University School of Medicine, 1Department of Dermatology, Nippon Medical School, Tokyo, 2Department of Dermatology, Jichi Medical University, Shimotsuke, 3Department of Dermatology, Kanto Central Hospital, 4Department of Dermatology, Tokyo Women’s Medical University, Tokyo, Japan Background: CC chemokine ligand 17 (CCL17) and CCL22 27(2) 152∼156, 2015) are the functional ligands for CCR4. We previously reported that inhibitors of nuclear factor-kappa B and p38 mi- -Keywords- togen-activated protein kinase (p38 MAPK), but not of ex- Chemokine CCL22, Chemokine CCL17, Epidermal growth tracellular signal-related kinase (ERK), inhibited tumor ne- factor receptor, HaCaT keratinocytes crosis factor (TNF)-α- and interferon (IFN)-γ-induced pro- duction of CCL17 by the human keratinocyte cell line, HaCaT. Further, an inhibitor of epidermal growth factor re- INTRODUCTION ceptor (EGFR) enhanced the CCL17 production by these keratinocytes. Objective: To identify the mechanism under- The macrophage-derived chemokine (MDC)/CC chemo- lying CCL22 production by HaCaT cells. Methods: We inves- kine ligand 22 (CCL22) is one of the functional ligands for tigated the signal transduction pathways by which TNF-α CC chemokine receptor 4 (CCR4) and is a chemoattractant and IFN-γ stimulate HaCaT cells to produce CCL22 by add- for the CCR4-expressing cells such as Th2 cells. We and ing various inhibitors.
    [Show full text]
  • CX3CR1 Deficiency Attenuates DNFB-Induced Contact
    International Journal of Molecular Sciences Article CX3CR1 Deficiency Attenuates DNFB-Induced Contact Hypersensitivity through Skewed Polarization towards M2 Phenotype in Macrophages 1, 1, 1,2, 1,3 Sayaka Otobe y, Teruyoshi Hisamoto y, Tomomitsu Miyagaki * , Sohshi Morimura , Hiraku Suga 1, Makoto Sugaya 1,3 and Shinichi Sato 1 1 Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; confi[email protected] (S.O.); [email protected] (T.H.); [email protected] (S.M.); [email protected] (H.S.); [email protected] (M.S.); [email protected] (S.S.) 2 Department of Dermatology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan 3 Department of Dermatology, International University of Health and Welfare, Chiba 286-0124, Japan * Correspondence: [email protected]; Tel.: +81-44-977-8111; Fax: +81-44-977-3540 These authors contributed equally to this work. y Received: 28 September 2020; Accepted: 5 October 2020; Published: 7 October 2020 Abstract: CX3CL1 can function as both an adhesion molecule and a chemokine for CX3CR1+ cells, such as T cells, monocytes, and NK cells. Recent studies have demonstrated that CX3CL1–CX3CR1 interaction is associated with the development of various inflammatory skin diseases. In this study, we examined CX3CR1 involvement in 2,4-dinitrofluorobenzene (DNFB)-induced contact / hypersensitivity using CX3CR1− − mice. Ear swelling and dermal edema were attenuated after / DNFB challenge in CX3CR1− − mice. Expression of TNF-α, IL-6, and M1 macrophage markers / was decreased in the ears of CX3CR1− − mice, whereas expression of M2 macrophage markers including arginase-1 was increased.
    [Show full text]
  • Differential Expression of Interferon-Γ and Chemokine Genes
    Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response Owens et al. Owens et al. Journal of Neuroinflammation 2013, 10:56 http://www.jneuroinflammation.com/content/10/1/56 Owens et al. Journal of Neuroinflammation 2013, 10:56 JOURNAL OF http://www.jneuroinflammation.com/content/10/1/56 NEUROINFLAMMATION RESEARCH Open Access Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response Geoffrey C Owens1,7*, My N Huynh1, Julia W Chang1, David L McArthur1, Michelle J Hickey2, Harry V Vinters2,3, Gary W Mathern1,4,5,6† and Carol A Kruse1,6† Abstract Background: Rasmussen encephalitis (RE) is a rare complex inflammatory disease, primarily seen in young children, that is characterized by severe partial seizures and brain atrophy. Surgery is currently the only effective treatment option. To identify genes specifically associated with the immunopathology in RE, RNA transcripts of genes involved in inflammation and autoimmunity were measured in brain tissue from RE surgeries and compared with those in surgical specimens of cortical dysplasia (CD), a major cause of intractable pediatric epilepsy. Methods: Quantitative polymerase chain reactions measured the relative expression of 84 genes related to inflammation and autoimmunity in 12 RE specimens and in the reference group of 12 CD surgical specimens. Data were analyzed by consensus clustering using the entire dataset, and by pairwise comparison of gene expression levels between the RE and CD cohorts using the Harrell-Davis distribution-free quantile estimator method.
    [Show full text]
  • Treatment with an Anti-CX3CL1 Antibody Suppresses M1 Macrophage Infiltration in Interstitial Lung Disease in SKG Mice
    pharmaceuticals Article Treatment with an Anti-CX3CL1 Antibody Suppresses M1 Macrophage Infiltration in Interstitial Lung Disease in SKG Mice Satoshi Mizutani 1 , Junko Nishio 1,2, Kanoh Kondo 1, Kaori Motomura 1, Zento Yamada 1, Shotaro Masuoka 1, Soichi Yamada 1, Sei Muraoka 1 , Naoto Ishii 3, Yoshikazu Kuboi 3, Sho Sendo 4, Tetuo Mikami 5, Toshio Imai 3 and Toshihiro Nanki 1,* 1 Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; [email protected] (S.M.); [email protected] (J.N.); [email protected] (K.K.); [email protected] (K.M.); [email protected] (Z.Y.); [email protected] (S.M.); [email protected] (S.Y.); [email protected] (S.M.) 2 Department of Immunopathology and Immunoregulation, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan 3 KAN Research Institute, Inc., Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; [email protected] (N.I.); [email protected] (Y.K.); [email protected] (T.I.) 4 Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe-shi, Hyogo 650-0017, Japan; [email protected] 5 Department of Pathology, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan; Citation: Mizutani, S.; Nishio, J.; [email protected] Kondo, K.; Motomura, K.; Yamada, Z.; * Correspondence: [email protected]; Tel.: +81-3-3762-4151 (ext.
    [Show full text]
  • Tissue-Specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease
    Immune Netw. 2018 Feb;18(1):e5 https://doi.org/10.4110/in.2018.18.e5 pISSN 1598-2629·eISSN 2092-6685 Review Article Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease Myoungsoo Lee1,2, Yongsung Lee1, Jihye Song1, Junhyung Lee1, Sun-Young Chang1,2,* 1Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea 2Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea Received: Oct 14, 2017 ABSTRACT Revised: Dec 31, 2017 Accepted: Jan 1, 2018 Chemokine (C-X3-C motif ) ligand 1 (CX3CL1, also known as fractalkine) and its receptor *Correspondence to chemokine (C-X3-C motif ) receptor 1 (CX3CR1) are widely expressed in immune cells and Sun-Young Chang non-immune cells throughout organisms. However, their expression is mostly cell type- Laboratory of Microbiology, College of specific in each tissue. CX3CR1 expression can be found in monocytes, macrophages, Pharmacy, Ajou University, 164 World cup-ro, dendritic cells, T cells, and natural killer (NK) cells. Interaction between CX3CL1 and CX3CR1 Yeongtong-gu, Suwon 16499, Korea. can mediate chemotaxis of immune cells according to concentration gradient of ligands. E-mail: [email protected] CX3CR1 expressing immune cells have a main role in either pro-inflammatory or anti- Copyright © 2018. The Korean Association of inflammatory response depending on environmental condition. In a given tissue such as Immunologists bone marrow, brain, lung, liver, gut, and cancer, CX3CR1 expressing cells can maintain tissue This is an Open Access article distributed homeostasis. Under pathologic conditions, however, CX3CR1 expressing cells can play a under the terms of the Creative Commons Attribution Non-Commercial License (https:// critical role in disease pathogenesis.
    [Show full text]
  • Plasma Macrophage-Derived Chemokine (CCL22) and Its
    Egypt J Pediatr Allergy Immunol 2005; 3(1): 20-31. Original article Plasma macrophage-derived chemokine (CCL22) and its receptor CCR4 on peripheral blood T lymphocytes of asthmatic children Background: The macrophage-derived chemokine (MDC/CCL22) acts on Mohamed H. Ezzat, CC chemokine receptor-4 (CCR4) to direct trafficking and recruitment of T Karim Y. Shaheen*. helper-2 (TH2) cells into sites of allergic inflammation. It was previously found overexpressed in lesional samples from adult asthmatics. Objective: This study is aimed to investigate the participation of CCR4/MDC axis in the development of TH2-dominated allergen-induced From the Departments childhood asthma in relation to disease activity, attack severity, and of Pediatrics and response to therapy, and to outline its value in differentiating atopic asthma Clinical Pathology*, from infection-associated airway reactivity. Faculty of Medicine, Methods: Proportion of CCR4-expressing peripheral blood T lymphocytes Ain Shams University, + (CCR4 PBTL%) were purified and quantitated by negative selection from Cairo, Egypt. peripheral blood mononuclear cells by flow cytometry, and the concentration of MDC in plasma was measured by ELISA in 32 children with atopic asthma (during exacerbation and remission), as well as in 12 children with acute lower respiratory tract infections (ALRTI), and 20 healthy children serving as controls. Results: The mean plasma MDC level (925±471.5 pg/ml) and CCR4+PBTL% (55.3±23.6%) were significantly higher in asthmatic children during acute attacks in comparison to children with ALRTI (109±27.3 pg/ml and 27.6±7.5%) and healthy controls (99.6±25.6 pg/ml and 24.2±4.1%).
    [Show full text]
  • The Efficacy of Etanercept As Anti-Breast Cancer Treatment Is
    Shirmohammadi et al. BMC Cancer (2020) 20:836 https://doi.org/10.1186/s12885-020-07228-y RESEARCH ARTICLE Open Access The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages Elnaz Shirmohammadi1, Seyed-Esmaeil Sadat Ebrahimi1, Amir Farshchi2 and Mona Salimi3* Abstract Background: Interaction between microenvironment and breast cancer cells often is not considered at the early stages of drug development leading to failure of many drugs at later clinical stages. Etanercept is a TNF-alpha inhibitor that has been investigated for potential antitumor effect in breast cancer with conflicting results. Methods: Secretome data on MDA-MB-231 cancer cell-line were from public repositories and subjected to gene enrichment analyses. Since MDA-MB-231 cells secrete high levels of Granulocyte-Monocyte Colony Stimulating Factor, which activates macrophages to promote tumor growth, the effect of macrophage co-culturing on anticancer efficacy of Etanercept in breast cancer was evaluated using the Boolean network modeling and in vitro experiments including invasion, cell cycle, Annexin PI, and tetrazolium based viability assays and NFKB activity. Results: The secretome profile of MDA-MB-231 cells was similar to the expression of genes following treatment of breast cancer cells with TNF-α. Accordingly, inhibition of TNF-α by Etanercept decreased MDA-MB-231 cell survival, induced apoptosis and cell cycle arrest in vitro and inhibited NFKB activation. The inhibitory effect of Etanercept on cell viability, cell cycle progression, invasion and induction of apoptosis decreased following co-culturing of the cancer cells with macrophages. The Boolean network modeling of the changes in the dynamics of intracellular signaling pathways revealed NFKB activation by secretome of macrophages, leading to a decreased efficacy of Etanercept, suggesting NFKB inhibition as an alternative approach to inhibit cancer cell growth in the presence of macrophage crosstalk.
    [Show full text]
  • Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration
    Published OnlineFirst October 2, 2015; DOI: 10.1158/0008-5472.CAN-14-3499 Cancer Microenvironment and Immunology Research Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration of Regulatory T Cells and Blocks Cancer Progression David Anz1,2, Moritz Rapp1, Stephan Eiber1,2, Viktor H. Koelzer1, Raffael Thaler1, Sascha Haubner1, Max Knott1, Sarah Nagel1, Michaela Golic1, Gabriela M. Wiedemann1, Franz Bauernfeind3, Cornelia Wurzenberger1, Veit Hornung3,4, Christoph Scholz5, Doris Mayr6, Simon Rothenfusser1, Stefan Endres1, and Carole Bourquin1,7 Abstract The chemokine CCL22 is abundantly expressed in many tion. Mechanistic investigations indicated that Treg blockade types of cancer and is instrumental for intratumoral recruit- was a consequence of reduced intratumoral CCL22 levels ment of regulatory T cells (Treg), an important subset of caused by type I IFN. Notably, stable expression of CCL22 immunosuppressive and tumor-promoting lymphocytes. In abrogated the antitumor effects of treatment with RLR or this study, we offer evidence for a generalized strategy to TLR ligands. Taken together, our findings argue that type I blunt Treg activity that can limit immune escape and promote IFN blocks the Treg-attracting chemokine CCL22 and thus tumor rejection. Activation of innate immunity with Toll-like helps limit the recruitment of Treg to tumors, a finding with receptor (TLR) or RIG-I–like receptor (RLR) ligands prevented implications for cancer immunotherapy. Cancer Res; 75(21); 1– accumulation of Treg in tumors by blocking their immigra- 11. Ó2015 AACR. Introduction effector T-cell function ex vivo (1). Indeed, suppression of anti- cancer immunity is mediated predominantly by intratumoral Treg The chemokine CCL22 is abundantly expressed in the tissue of that suppress CD8 T-cell responses locally at the tumor site (6).
    [Show full text]
  • Fractalkine/CX3CL1 Via P38 MAPK Enhances the Adhesion Of
    The CC Chemokine MCP-1 Stimulates Surface Expression of CX3CR1 and Enhances the Adhesion of Monocytes to Fractalkine/CX3CL1 via p38 MAPK This information is current as of September 25, 2021. Simone R. Green, Ki Hoon Han, Yiming Chen, Felicidad Almazan, Israel F. Charo, Yury I. Miller and Oswald Quehenberger J Immunol 2006; 176:7412-7420; ; doi: 10.4049/jimmunol.176.12.7412 Downloaded from http://www.jimmunol.org/content/176/12/7412 References This article cites 52 articles, 29 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/176/12/7412.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The CC Chemokine MCP-1 Stimulates Surface Expression of CX3CR1 and Enhances the Adhesion of Monocytes to Fractalkine/CX3CL1 via p38 MAPK1 Simone R.
    [Show full text]