Fractalkine/CX3CL1 Via P38 MAPK Enhances the Adhesion Of

Total Page:16

File Type:pdf, Size:1020Kb

Fractalkine/CX3CL1 Via P38 MAPK Enhances the Adhesion Of The CC Chemokine MCP-1 Stimulates Surface Expression of CX3CR1 and Enhances the Adhesion of Monocytes to Fractalkine/CX3CL1 via p38 MAPK This information is current as of September 25, 2021. Simone R. Green, Ki Hoon Han, Yiming Chen, Felicidad Almazan, Israel F. Charo, Yury I. Miller and Oswald Quehenberger J Immunol 2006; 176:7412-7420; ; doi: 10.4049/jimmunol.176.12.7412 Downloaded from http://www.jimmunol.org/content/176/12/7412 References This article cites 52 articles, 29 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/176/12/7412.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The CC Chemokine MCP-1 Stimulates Surface Expression of CX3CR1 and Enhances the Adhesion of Monocytes to Fractalkine/CX3CL1 via p38 MAPK1 Simone R. Green,2* Ki Hoon Han,2,3* Yiming Chen,* Felicidad Almazan,* Israel F. Charo,† Yury I. Miller,* and Oswald Quehenberger4* The membrane-anchored form of CX3CL1 has been proposed as a novel adhesion protein for leukocytes. This functional property of CX3CL1 is mediated through CX3CR1, a chemokine receptor expressed predominantly on circulating white blood cells. Thus far, it is still uncertain at what stage of the trafficking process CX3CR1 becomes importantly involved and how the CX3CR1- dependent adhesion of leukocytes is regulated during inflammation. The objective of this study was to examine the functional effects of chemokine stimulation on CX3CR1-mediated adhesion of human monocytes. Consistent with previous reports, our data Downloaded from indicate that the activity of CX3CR1 on resting monocytes is sufficient to mediate cell adhesion to CX3CL1. However, the basal, nonstimulated adhesion activity is low, and we hypothesized that like the integrins, CX3CR1 may require a preceding activation step to trigger firm leukocyte adhesion. Compatible with this hypothesis, stimulation of monocytes with MCP-1 significantly increased their adhesion to immobilized CX3CL1, under both static and physiological flow conditions. The increase of the adhesion activity was mediated through CCR2-dependent signaling and obligatory activation of the p38 MAPK pathway. Stimulation with MCP-1 also induced a rapid increase of CX3CR1 protein on the cell surface. Inhibition of the p38 MAPK pathway prevented this http://www.jimmunol.org/ increase of CX3CR1 surface expression and blunted the effect of MCP-1 on cell adhesion, indicating a causal link between receptor surface density and adhesion activity. Together, our data suggest that a chemokine signal is required for firm CX3CR1-dependent adhesion and demonstrate that CCR2 is an important regulator of CX3CL1-dependent leukocyte adhesion. The Journal of Immunology, 2006, 176: 7412–7420. he interaction of leukocytes with the vascular wall and the adhesion of leukocytes (8, 9). Chemokine signals also stimulate subsequent migration across endothelial junctions are the subsequent diapedesis of the adherent cells through the vascu- central to both immune surveillance and host defense. The lar wall and their migration to sites of inflammation. T by guest on September 25, 2021 molecular control of these trafficking processes is exquisitely reg- Recently, a novel integrin-independent pathway for leukocyte ulated and, in accordance with the classic multistep model of leu- capture has been described that involves the chemokine fractalkine kocyte recruitment, requires the coordinated actions of adhesion (or CX3CL15 in the standard chemokine nomenclature) (5). molecules and chemotactic factors (1–3). At least three distinct CX3CL1, the sole member of the CX3C family of chemokines families of adhesion molecules orchestrate leukocyte adhesion in- established on the basis of the arrangement of N-terminal con- cluding selectins, integrins, and members of the Ig superfamily (4). served cysteine residues, is structurally distinct from other chemo- Each is involved at different stages of leukocyte emigration, and kines and is encoded as a type I transmembrane protein containing the synchronization of their action is essential for functional im- multiple domains (10, 11). The chemokine domain is anchored to mune response. Immune surveillance under quiescent conditions the plasma membrane through an extended mucin-rich stalk, fused entails the continuous interaction of the circulating leukocytes with to a transmembrane helix and an intracellular domain (12, 13). the endothelium. However, in the absence of chemokines this in- CX3CL1 is highly expressed on vascular endothelial cells but only teraction is reversible and is mediated primarily by selectins (5–7). upon activation with inflammatory cytokines (10). Other cellular In the inflammatory event, locally produced chemokines lead to sources for CX3CL1 include neurons (14), epithelial cells (15, 16), the activation of integrins, which then allows shear-resistant firm smooth muscle cells (17), dendritic cells (18), and macrophages (19). The extended mucin-rich stalk of the endothelial-bound *Department of Medicine, University of California, San Diego, La Jolla, California 92093; and †Gladstone Institute of Cardiovascular Disease, San Francisco, California CX3CL1 allows the chemokine domain to be effectively presented 94141 to circulating leukocytes. Based on in vitro studies, the membrane- Received for publication September 27, 2005. Accepted for publication March bound configuration of CX3CL1 induces cell adhesion through 30, 2006. interaction with its cognate receptor CX3CR1, expressed on leu- The costs of publication of this article were defrayed in part by the payment of page kocytes including monocytes, T cells, and NK cells (20, 21). Like charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. other chemokine receptors, CX3CR1 is a seven-transmembrane 1 This work was supported by National Institutes of Health Grant HL56989 (La Jolla domain G protein-coupled receptor, but the adhesion does not re- Specialized Center of Research in Molecular Medicine and Atherosclerosis). quire transmembrane signaling and is independent of calcium 2 S.R.G. and K.H.H. contributed equally to this study. fluxes (22, 23). In addition to its function as an adhesion molecule, 3 Current address: College of Medicine, University of Ulsan, Seoul, South Korea. 4 Address correspondence and reprint requests to Dr. Oswald Quehenberger, Depart- 5 Abbreviations used in this paper: CX3CL1, fractalkine according to the new che- ment of Medicine, 0682, University of California, San Diego, 9500 Gilman Drive, La mokine nomenclature; his-CX3CL1, histidine-tagged secreted form of CX3CL1; Jolla, CA 92093-0682. E-mail address: [email protected] PTX, pertussis toxin. Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 The Journal of Immunology 7413 CX3CL1 can be released from the cell surface through either stim- 100%, and any changes in the mean fluorescence induced by the various ulated or constitutive proteolytic cleavage to produce a soluble treatments were normalized to that baseline. Flow cytometry was per- molecule (24, 25). In this form, CX3CL1 acts like a conventional formed using a FACSCalibur instrument with CellQuest software (BD Bioscience). chemokine exerting potent chemotactic activity (10, 11). In this study, we examined the mechanism by which the Static adhesion assay CX3CR1-dependent adhesion of monocytes is regulated under Wells of a 96-well plate (Corning) were coated overnight at 4°C with conditions of inflammation in the presence of chemokines. We ascitic fluid containing monoclonal anti-polyhistidine Ab (1/1000 dilution found that MCP-1 markedly enhanced the CX3CR1 expression on in PBS). After two washes with PBS, the wells were blocked with adhesion freshly isolated human peripheral blood monocytes or monocytic buffer (RPMI 1640, 1 mg/ml BSA, 10 mM HEPES, pH 7.4) for1hatroom temperature. The buffer was removed, the his-CX3CL1 was added in 50 ␮l cell lines and stimulated the adhesion of these cells to immobilized of adhesion buffer at a final concentration of 30 nM and incubated for 1 h CX3CL1. In contrast to the basal adhesion, the chemokine-stim- at 37°C. The wells were washed three times, and static adhesion assays ulated adhesion activity required the activation of CCR2, was were performed essentially as described (20). blocked by pertussis toxin (PTX) and involved MAPK-mediated Before the adhesion assay, THP-1 cells or freshly isolated human and murine monocytes were washed once with PBS, resuspended in adhesion signaling events. From our data, we concluded that chemokines buffer at 1 ϫ 106 cells/ml, and stimulated with various concentrations
Recommended publications
  • Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
    Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation.
    [Show full text]
  • S41467-017-02610-0.Pdf
    ARTICLE DOI: 10.1038/s41467-017-02610-0 OPEN Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours Adama Sidibe 1,4, Patricia Ropraz1, Stéphane Jemelin1, Yalin Emre 1, Marine Poittevin1, Marc Pocard2,3, Paul F. Bradfield1 & Beat A. Imhof1 1234567890():,; Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ inter- mediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies. 1 Department of Pathology and Immunology, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. 2 Department of Oncologic and Digestive Surgery, AP-HP, Hospital Lariboisière, 2 rue Ambroise Paré, F-75475 Paris cedex 10, France. 3 Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965, 49 boulevard de la Chapelle, F-75475 Paris cedex 10, France. 4Present address: Department of Physiology and Metabolism, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
    [Show full text]
  • CX3CR1 Deficiency Attenuates DNFB-Induced Contact
    International Journal of Molecular Sciences Article CX3CR1 Deficiency Attenuates DNFB-Induced Contact Hypersensitivity through Skewed Polarization towards M2 Phenotype in Macrophages 1, 1, 1,2, 1,3 Sayaka Otobe y, Teruyoshi Hisamoto y, Tomomitsu Miyagaki * , Sohshi Morimura , Hiraku Suga 1, Makoto Sugaya 1,3 and Shinichi Sato 1 1 Department of Dermatology, the University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; confi[email protected] (S.O.); [email protected] (T.H.); [email protected] (S.M.); [email protected] (H.S.); [email protected] (M.S.); [email protected] (S.S.) 2 Department of Dermatology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan 3 Department of Dermatology, International University of Health and Welfare, Chiba 286-0124, Japan * Correspondence: [email protected]; Tel.: +81-44-977-8111; Fax: +81-44-977-3540 These authors contributed equally to this work. y Received: 28 September 2020; Accepted: 5 October 2020; Published: 7 October 2020 Abstract: CX3CL1 can function as both an adhesion molecule and a chemokine for CX3CR1+ cells, such as T cells, monocytes, and NK cells. Recent studies have demonstrated that CX3CL1–CX3CR1 interaction is associated with the development of various inflammatory skin diseases. In this study, we examined CX3CR1 involvement in 2,4-dinitrofluorobenzene (DNFB)-induced contact / hypersensitivity using CX3CR1− − mice. Ear swelling and dermal edema were attenuated after / DNFB challenge in CX3CR1− − mice. Expression of TNF-α, IL-6, and M1 macrophage markers / was decreased in the ears of CX3CR1− − mice, whereas expression of M2 macrophage markers including arginase-1 was increased.
    [Show full text]
  • Treatment with an Anti-CX3CL1 Antibody Suppresses M1 Macrophage Infiltration in Interstitial Lung Disease in SKG Mice
    pharmaceuticals Article Treatment with an Anti-CX3CL1 Antibody Suppresses M1 Macrophage Infiltration in Interstitial Lung Disease in SKG Mice Satoshi Mizutani 1 , Junko Nishio 1,2, Kanoh Kondo 1, Kaori Motomura 1, Zento Yamada 1, Shotaro Masuoka 1, Soichi Yamada 1, Sei Muraoka 1 , Naoto Ishii 3, Yoshikazu Kuboi 3, Sho Sendo 4, Tetuo Mikami 5, Toshio Imai 3 and Toshihiro Nanki 1,* 1 Department of Internal Medicine, Division of Rheumatology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan; [email protected] (S.M.); [email protected] (J.N.); [email protected] (K.K.); [email protected] (K.M.); [email protected] (Z.Y.); [email protected] (S.M.); [email protected] (S.Y.); [email protected] (S.M.) 2 Department of Immunopathology and Immunoregulation, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan 3 KAN Research Institute, Inc., Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan; [email protected] (N.I.); [email protected] (Y.K.); [email protected] (T.I.) 4 Department of Internal Medicine, Division of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe-shi, Hyogo 650-0017, Japan; [email protected] 5 Department of Pathology, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan; Citation: Mizutani, S.; Nishio, J.; [email protected] Kondo, K.; Motomura, K.; Yamada, Z.; * Correspondence: [email protected]; Tel.: +81-3-3762-4151 (ext.
    [Show full text]
  • Tissue-Specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease
    Immune Netw. 2018 Feb;18(1):e5 https://doi.org/10.4110/in.2018.18.e5 pISSN 1598-2629·eISSN 2092-6685 Review Article Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease Myoungsoo Lee1,2, Yongsung Lee1, Jihye Song1, Junhyung Lee1, Sun-Young Chang1,2,* 1Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea 2Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea Received: Oct 14, 2017 ABSTRACT Revised: Dec 31, 2017 Accepted: Jan 1, 2018 Chemokine (C-X3-C motif ) ligand 1 (CX3CL1, also known as fractalkine) and its receptor *Correspondence to chemokine (C-X3-C motif ) receptor 1 (CX3CR1) are widely expressed in immune cells and Sun-Young Chang non-immune cells throughout organisms. However, their expression is mostly cell type- Laboratory of Microbiology, College of specific in each tissue. CX3CR1 expression can be found in monocytes, macrophages, Pharmacy, Ajou University, 164 World cup-ro, dendritic cells, T cells, and natural killer (NK) cells. Interaction between CX3CL1 and CX3CR1 Yeongtong-gu, Suwon 16499, Korea. can mediate chemotaxis of immune cells according to concentration gradient of ligands. E-mail: [email protected] CX3CR1 expressing immune cells have a main role in either pro-inflammatory or anti- Copyright © 2018. The Korean Association of inflammatory response depending on environmental condition. In a given tissue such as Immunologists bone marrow, brain, lung, liver, gut, and cancer, CX3CR1 expressing cells can maintain tissue This is an Open Access article distributed homeostasis. Under pathologic conditions, however, CX3CR1 expressing cells can play a under the terms of the Creative Commons Attribution Non-Commercial License (https:// critical role in disease pathogenesis.
    [Show full text]
  • Chemokines and Their Receptors in Rheumatoid Arthritis
    ARTHRITIS & RHEUMATISM Vol. 52, No. 3, March 2005, pp 710–721 DOI 10.1002/art.20932 © 2005, American College of Rheumatology REVIEW Chemokines and Their Receptors in Rheumatoid Arthritis Future Targets? Alisa E. Koch Introduction tem was introduced in 2000, in which chemokines are considered as chemokine ligands, and each chemokine Rheumatoid arthritis (RA) is a chronic inflam- has been assigned a designation of CXCL, CCL, XCL, matory disease leading to joint destruction (1). In RA, or CX3CL1 (Figure 1) (10–12). In this report, both the migration of leukocytes into the synovial tissue (ST) former and new nomenclature are noted. occurs. These leukocytes and other cells in the ST, particularly RA ST fibroblasts, produce mediators of CXC chemokines have 2 conserved cysteines inflammation, including chemokines (1). Chemokines, separated by 1 unconserved amino acid (9,13) (Figure currently numbering more than 50, are chemotactic 1). CXC chemokines classically were thought to be cytokines that are important in recruitment of leuko- involved in the chemotaxis of neutrophils. Many chemo- cytes and angiogenesis. They exert chemotactic activity kines may have arisen from reduplication of ancestral toward a variety of cell types (2–7). Some chemokines, genes (13). Hence, CXC chemokines that act on neutro- particularly CXC chemokines containing the ELR motif, phils are clustered on chromosome 4q12–13 (13). How- are angiogenic. The last few years have seen a rapid ever, some genes of more newly discovered CXC che- development of studies aimed at targeting proinflamma- mokines that recruit lymphocytes tend to be located tory chemokines or their receptors in RA and animal away from the major clusters (13).
    [Show full text]
  • Tear and Serum Interleukin-8 and Serum CX3CL1, CCL2 and CCL5 in Sulfur Mustard Eye-Exposed Patients
    International Immunopharmacology 77 (2019) 105844 Contents lists available at ScienceDirect International Immunopharmacology journal homepage: www.elsevier.com/locate/intimp Tear and serum interleukin-8 and serum CX3CL1, CCL2 and CCL5 in sulfur T mustard eye-exposed patients ⁎ Tooba Ghazanfaria, ,1, Hassan Ghasemib, Roya Yaraeec,1, Mahmoud Mahmoudid, Mohammad Ali Javadie, Mohammad Reza Soroushf, Soghrat Faghihzadehg,2, Ali Mohammad Mohseni Majda,1, Raheleh Shakerih, Mahmoud Babaeii,j, Fatemeh Heidarya,1, Zuhair Mohammad Hassank a Immunoregulation Research Center, Shahed University, Tehran, Iran b Department of Ophthalmology, Shahed University, 3319118651 Tehran, Iran c Department of Immunology and Immunoregulation Research Center, Shahed University, Tehran, Iran d Immunology Research Center, Mashhad University of Medical Sciences, 9138813944 Mashhad, Iran e Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran f Janbazan Medical and Engineering Research Center (JMERC), NO.17, Farrokh St., Moghaddas Ardebily Ave., Chamran Highway, 1985946531 Tehran, Iran g Department of Biostatistics and Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran h Department of Biological Science and Biotechnology, Faculty of Science, 6617715175, University of Kurdistan, Sanandaj, Iran i Department of Ophthalmology, Baqiyatallah University of Medical Sciences, 1435916471 Tehran, Iran j Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran k Department of Immunology, School of Medical Sciences, Tarbiat Modares University, 14115111 Tehran, Iran ARTICLE INFO ABSTRACT Keywords: Background: The serum and tear levels of four inflammatory chemokines were evaluated in sulfur mustard (SM)- Sulfur mustard exposed with serious ocular problems. Ocular injury Materials and methods: In this study, 128 SM-exposed patients and 31 healthy control participants participated. MCP-1/CCL2 Tear and serum levels of chemokines were assessed by ELISA method.
    [Show full text]
  • Expression and Regulation of Chemokines in Murine and Human Type 1 Diabetes Suparna A
    ORIGINAL ARTICLE Expression and Regulation of Chemokines in Murine and Human Type 1 Diabetes Suparna A. Sarkar,1 Catherine E. Lee,1 Francisco Victorino,1,2 Tom T. Nguyen,1 Jay A. Walters,1 Adam Burrack,1,2 Jens Eberlein,1 Steven K. Hildemann,3 and Dirk Homann1,2,4 fl – More than one-half of the ~50 human chemokines have been in ammation (1 3), and multiple chemokines and chemokine associated with or implicated in the pathogenesis of type 1 receptors have emerged as pertinent contributors to the diabetes, yet their actual expression patterns in the islet environ- natural history of various autoimmune disorders, including ment of type 1 diabetic patients remain, at present, poorly defined. type 1 diabetes; potential biomarkers; and possible drug Here, we have integrated a human islet culture system, murine targets (4–8). In fact, work conducted over the past 20 models of virus-induced and spontaneous type 1 diabetes, and the years has implicated more than one-half of all human and/ histopathological examination of pancreata from diabetic organ or rodent chemokines in the pathogenesis of type 1 diabetes donors with the goal of providing a foundation for the informed and/or its complications, although much of the work pub- selection of potential therapeutic targets within the chemokine/ receptor family. Chemokine (C-C motif) ligand (CCL) 5 (CCL5), lished to date on human type 1 diabetes and chemokines CCL8, CCL22, chemokine (C-X-C motif) ligand (CXCL) 9 (CXCL9), remains limited to genetic association studies and che- CXCL10, and chemokine (C-X3-C motif) ligand (CX3CL) 1 (CX3CL1) mokine/receptor analyses in peripheral blood (9–23).
    [Show full text]
  • Chemotaxis to CX3CL1 (Fractalkine) Syk Is Required for Monocyte/Macrophage
    Syk Is Required for Monocyte/Macrophage Chemotaxis to CX3CL1 (Fractalkine) Jean-Claude Gevrey, Beth M. Isaac and Dianne Cox This information is current as J Immunol 2005; 175:3737-3745; ; of September 26, 2021. doi: 10.4049/jimmunol.175.6.3737 http://www.jimmunol.org/content/175/6/3737 Downloaded from References This article cites 59 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/175/6/3737.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Syk Is Required for Monocyte/Macrophage Chemotaxis to CX3CL1 (Fractalkine)1 Jean-Claude Gevrey,2* Beth M. Isaac,* and Dianne Cox*† CX3CL1 (fractalkine), the only member of the ␦ subclass of chemokines, is a known chemotactic factor for monocytes/macro- phages as well as NK cells and T lymphocytes.
    [Show full text]
  • CX3CL1 System in the Cross-Talk Between Chronic Lymphocytic Leukemia Cells and Tumor Microenvironment
    Leukemia (2011) 25, 1268–1277 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu ORIGINAL ARTICLE A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment E Ferretti1, M Bertolotto2, S Deaglio3, C Tripodo4, D Ribatti5, V Audrito3, F Blengio6, S Matis7, S Zupo8, D Rossi9, L Ottonello2, G Gaidano9, F Malavasi10, V Pistoia1,11 and A Corcione1,11 1Laboratory of Oncology, IRCCS G. Gaslini, Genova, Italy; 2Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genova, Genova, Italy; 3Department of Genetics, Biology & Biochemistry, Human Genetics Foundation (HuGeF), University of Torino, Torino, Italy; 4Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, Palermo, Italy; 5Department of Human Anatomy and Histology, University of Bari, Bari, Italy; 6Laboratory of Molecular Biology, Gaslini Institute, Genova, Italy; 7Medical Oncology C, National Cancer Research Institute, Genova, Italy; 8Laboratory of Diagnostics of Lymphoproliferative Disorders, National Cancer Research Institute, Genova, Italy; 9Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro, University of Eastern Piedmont, Novara, Italy and 10Department of Genetics, Biology & Biochemistry, Research Center for Experimental Medicine (CeRMS), University of Torino, Torino, Italy Several chemokines/chemokine receptors such as CCR7, Additional prognostic markers are surface CD38 and intra- CXCR4 and CXCR5 attract chronic lymphocytic leukemia cellular ZAP-70 whose expression in leukemic cells correlates (CLL) cells to specific microenvironments. Here we have with unfavorable clinical outcome.2,4,5 Finally, different chro- investigated whether the CX3CR1/CX3CL1 axis is involved in the interaction of CLL with their microenvironment.
    [Show full text]
  • Influenza Infection Triggers Disease in a Genetic Model of Experimental
    Influenza infection triggers disease in a genetic model PNAS PLUS of experimental autoimmune encephalomyelitis Stephen Blackmorea, Jessica Hernandeza, Michal Judaa, Emily Ryderb, Gregory G. Freunda,c, Rodney W. Johnsona,b,d, and Andrew J. Steelmana,b,d,1 aDepartment of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801; bNeuroscience Program, University of Illinois Urbana–Champaign, Urbana, IL 61801; cDepartment of Pathology, University of Illinois Urbana–Champaign, Urbana, IL 61801; and dDivision of Nutritional Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801 Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved June 13, 2017 (received for review December 13, 2016) Multiple sclerosis (MS) is an autoimmune disease of the central affect the progression of many neurological diseases including nervous system. Most MS patients experience periods of symptom Alzheimer’s disease (10, 11), Parkinson’s disease (12), and exacerbation (relapses) followed by periods of partial recovery multiple sclerosis (13–17). (remission). Interestingly, upper-respiratory viral infections increase We are interested in determining how upper-respiratory in- the risk for relapse. Here, we used an autoimmune-prone T-cell fection contributes to the progression of neurological dis- receptor transgenic mouse (2D2) and a mouse-adapted human eases including multiple sclerosis (MS), the most prominent influenza virus to test the hypothesis that upper-respiratory viral autoimmune-mediated demyelinating and neurodegenerating infection can cause glial activation, promote immune cell trafficking disease of the CNS. The majority of MS patients exhibit an os- to the CNS, and trigger disease. Specifically, we inoculated 2D2 mice cillating disease course that is characterized by relatively short with influenza A virus (Puerto Rico/8/34; PR8) and then monitored periods of neurological dysfunction followed by periods of re- them for symptoms of inflammatory demyelination.
    [Show full text]
  • Exploring Chemokine Signaling LUNARIS™ Chemokine Kits
    IMMUNOLOGY Exploring Chemokine Signaling LUNARIS™ Chemokine Kits Human 10-Plex: CCL2 (MCP-1), CCL3, CCL4, CCL5 (RANTES), CCL11 (Eotaxin), CCL20, CXCL1, CXCL8 (IL-8), CXCL10 (IP-10), CXCL12 (SDF1A) Mouse 11-Plex: CCL2 (MCP-1), CCL3, CCL4, CCL5 (RANTES), CCL11 (Eotaxin), CCL19, CCL20, CCL22, CXCL1, CXCL10 (IP-10), CX3CL1 (Fractalkine) Chemokines Chemokine receptor Plasma membrane its | 2020.01 | 09075 | www.vierviertel.com | 09075 | 2020.01 its K Cytoplasm AYOXXA Chemokine AYOXXA Intracellular signaling Chemotaxis www.ayoxxa.com LUNARIS™ Human & Mouse Chemokine Kits Validated, scalable, robust Validated for quantitative analysis of up to 12 different chemokines in one sample Profile homeostatic and proinflammatory chemokine signatures in sample volumes as low as 3 µL Scalable and standardized assay architecture with robust chemistry guarantees reproducibility Harmonized panels for human and murine samples allow rapid translation of results from lab to clinic LUNARIS™ Human 10-Plex Chemokine Kit Quantifies CCL2 (MCP-1), CCL3, CCL4, CCL5 (RANTES), CCL11 (Eotaxin), CCL20, CXCL1, CXCL8 (IL-8), CXCL10 (IP-10), CXCL12 (SDF1A) in serum and cell culture supernatant. LUNARIS™ Mouse 11-Plex Chemokine Kit Quantifies CCL2 (MCP-1), CCL3, CCL4, CCL5 (RANTES), CCL11 (Eotaxin), CCL19, CCL20, CCL22, CXCL1, LUNARIS™ Human 10-Plex CXCL10 (IP-10), CX3CL1 (Fractalkine) Chemokine Kit in serum and cell culture supernatant. For Research Use Only. Not for use in diagnostic procedures. Chemokine Signaling Chemokines constitute the largest family of cytokines and mediate versatile and powerful signaling in cell migration, Analytes contained in LUNARIS™ Chemokine Kits homeostasis, inflammation, angiogenesis, embryogenesis, grouped by cellular function cancer metastasis and several other medically relevant functions. The four classes of chemokines initiate complex signaling cascades by binding to specific 7-transmembrane G protein- Lymphocyte Mononuclear Granulocyte coupled receptors.
    [Show full text]