THE DISTRIBUTION of the GALATHEID CRAB MUNIDA QUADRISPINA (Benedict 1902) in RELATION to OXYGEN CONCENTRATIONS in BRITISH COLUMBIA FJORDS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download (8MB)
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018). -
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet Marjolaine Matabos1,2*, Verena Tunnicliffe1,3, S. Kim Juniper1,2, Courtney Dean1 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2 NEPTUNE Canada, University of Victoria, Victoria, BC, Canada, 3 VENUS, University of Victoria, Victoria, BC, Canada Abstract Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l. -
Proceedings of the United States National Museum
descriptions of a new genus and forty-six new spp:cies of crusta(jeans of the family GALA- theid.e, with a list of the known marine SPECIES. By James E. Benedict, Assistant Curator of Marine Invertebrates. The collection of Galatheids in the United States National Museum, upon which this paper is based, began with the first dredgings of the U. S. Fish Commission steamer Albatross in 1883, and has grown as that busy ship has had opportunit}' to dredge. During the first period of its work many of the species taken were identical with those found by the U. S. Coast Survey steamer JBlake, afterwards described by A. Milne-Edwards, and in addition several new species were collected. During the voyage of the Albatross to the Pacific Ocean through the Straits of Magellan interesting addi- tions were made to the collection. Since then the greater part of the time spent by the Albatross at sea has been in Alaskan waters, where Galatheids do not seem to abound. However, occasional cruises else- where have greatly enriched the collection, notably three—one in the Gulf of California, one to the Galapagos Islands, and one to the coast of Japan and southward. The U. S. National Museum has received a number of specimens from the Museum of Natural History, Paris, and also from the Indian Museum, Calcutta. The literature of the deep-sea Galatheidie from the nature of the case is not greatly scattered. The first considerate number of species were described by A. Milne-Edwards from dredgings made by the Blake in the West Indian region. -
PROVINCI L Li L MUSEUM
PROVINCE OF BRITISH COLUMBIA REPORT OF THE PROVINCI_l_Li_L MUSEUM OF NATURAL HISTORY • FOR THE YEAR 1930 PRINTED BY AUTHORITY OF THE LEGISLATIVE ASSEMBLY. VICTORIA, B.C. : Printed by CHARLES F. BANFIELD, Printer to tbe King's Most Excellent Majesty. 1931. \ . To His Honour JAMES ALEXANDER MACDONALD, Administrator of the Province of British Columbia. MAY IT PLEASE YOUR HONOUR: The undersigned respectfully submits herewith the Annual Report of the Provincial Museum of Natural History for the year 1930. SAMUEL LYNESS HOWE, Pt·ovincial Secretary. Pt·ovincial Secretary's Office, Victoria, B.O., March 26th, 1931. PROVINCIAl. MUSEUM OF NATURAl. HISTORY, VICTORIA, B.C., March 26th, 1931. The Ho1Wm·able S. L. Ho11ie, ProvinciaZ Secreta11}, Victo1·ia, B.a. Sm,-I have the honour, as Director of the Provincial Museum of Natural History, to lay before you the Report for the year ended December 31st, 1930, covering the activities of the Museum. I have the honour to be, Sir, Your obedient servant, FRANCIS KERMODE, Director. TABLE OF CONTENTS . PAGE. Staff of the Museum ............................. ------------ --- ------------------------- ----------------------------------------------------- -------------- 6 Object.. .......... ------------------------------------------------ ----------------------------------------- -- ---------- -- ------------------------ ----- ------------------- 7 Admission .... ------------------------------------------------------ ------------------ -------------------------------------------------------------------------------- -
California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis -
Download The
THE CHAETOGNATHS OP WESTERN CANADIAN COASTAL WATERS by HELEN ELIZABETH LEA A THESIS SUBMITTED IN PARTIAL FULFILMENT OP THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in the Department of ZOOLOGY We accept this thesis as conforming to the standard required from candidates for the degree of MASTER OF ARTS Members of the Department of Zoology THE UNIVERSITY OF BRITISH COLUMBIA October, 1954 ABSTRACT A study of the chaetognath population in the waters of western Canada was undertaken to discover what species were pre• sent and to determine their distribution. The plankton samples examined were collected by the Institute of Oceanography of the University of British Columbia in the summers of 1953 and 1954 from eleven representative areas along the entire coastline of western Canada. It was hoped that the distribution study would correlate with fundamental oceanographic data, and that the pre• sence or absence of a given species of chaetognath might prove to be an indicator of oceanographic conditions. Four species of chaetognaths, representing two genera, were found to be pre• sent. One species, Sagitta elegans. was the most abundant and widely distributed species, occurring at least in small numbers in all the areas sampled. It was characteristic of the mixed coastal waters over the continental shelf and of the inland waters. Enkrohnla hamata. an oceanic form, occurred in most regions in small numbers as an immigrant, and was abundant to- ward the edge of the continental shelf. Sagitta lyra. strictly a deep sea species, was found only in the open waters along the outer coasts, and a few specimens of Sagitta decipiens. -
Comparative Aspects of the Control of Posture and Locomotion in The
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata Andres Gabriel Vidal Gadea Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Vidal Gadea, Andres Gabriel, "Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata" (2008). LSU Doctoral Dissertations. 3617. https://digitalcommons.lsu.edu/gradschool_dissertations/3617 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. COMPARATIVE ASPECTS OF THE CONTROL OF POSTURE AND LOCOMOTION IN THE SPIDER CRAB LIBINIA EMARGINATA A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Andrés Gabriel Vidal Gadea B.S. University of Victoria, 2003 May 2008 For Elsa and Roméo ii ACKNOWLEDGEMENTS The journey that culminates as I begin to write these lines encompassed multiple countries, languages and experiences. Glancing back at it, a common denominator constantly appears time and time again. This is the many people that I had the great fortune to meet, and that many times directly or indirectly provided me with the necessary support allowing me to be here today. -
Aquifers of the Capital Regional District
Aquifers of the Capital Regional District by Sylvia Kenny University of Victoria, School of Earth & Ocean Sciences Co-op British Columbia Ministry of Water, Land and Air Protection Prepared for the Capital Regional District, Victoria, B.C. December 2004 Library and Archives Canada Cataloguing in Publication Data Kenny, Sylvia. Aquifers of the Capital Regional District. Cover title. Also available on the Internet. Includes bibliographical references: p. ISBN 0-7726-52651 1. Aquifers - British Columbia - Capital. 2. Groundwater - British Columbia - Capital. I. British Columbia. Ministry of Water, Land and Air Protection. II. University of Victoria (B.C.). School of Earth and Ocean Sciences. III. Capital (B.C.) IV. Title. TD227.B7K46 2004 333.91’04’0971128 C2004-960175-X Executive summary This project focussed on the delineation and classification of developed aquifers within the Capital Regional District of British Columbia (CRD). The goal was to identify and map water-bearing unconsolidated and bedrock aquifers in the region, and to classify the mapped aquifers according to the methodology outlined in the B.C. Aquifer Classification System (Kreye and Wei, 1994). The project began in summer 2003 with the mapping and classification of aquifers in Sooke, and on the Saanich Peninsula. Aquifers in the remaining portion of the CRD including Victoria, Oak Bay, Esquimalt, View Royal, District of Highlands, the Western Communities, Metchosin and Port Renfrew were mapped and classified in summer 2004. The presence of unconsolidated deposits within the CRD is attributed to glacial activity within the region over the last 20,000 years. Glacial and glaciofluvial modification of the landscape has resulted in the presence of significant water bearing deposits, formed from the sands and gravels of Capilano Sediments, Quadra and Cowichan Head Formations. -
2004, Faulkes, No Escape Loss of Escape
No escape: Loss of escape-related giant neurons in spiny lobsters (Panulirus argus) Zen Faulkes, Alana Breen, Sandra Espinoza, and Nisha Varghese Department of Biology, University of Texas - Pan American. Email: [email protected] Introduction Methods Spiny lobsters retain the FAC cluster The crayfish escape circuit Spiny lobsters (Panulirus argus) were purchased from Keys Marine Lab, Florida, and housed in the Coastal Studies Although describing the FAC cluster in detail was not a goal of this project, this Lab, South Padre Island, Texas. Lobsters were anaesthetized by chilling before being dissected. The abdomen was group of cells is present in P. argus. The FAC cluster is more variable than the other Crayfish (Astacidea) have a well-studied circuit of giant neurons that mediate fast flexor motor neurons. It has been lost at least twice: once in the sand crab escape responses (Edwards et al. 1999, Wine and Krasne 1972, 1982). Key neurons in dissected, and the ventral nerve cord was removed. We examined nerve cords for large dorsal axons (i.e., LGs and MGs) under a stereo microscope. Nerve cords were embedded in paraffin, and sectioned on a microtome (5 µm slices). superfamily (Hippoidea), and once in the squat lobster species Munida quadrispina this circuit are the medial giant interneurons (MGs), lateral giant interneurons (LGs), (Wilson and Paul 1987). Curiously, another squat lobster species, Galathea strigosa, FAC and fast flexor motor giant neurons (MoGs). We searched for MoGs by staining the fast flexor motor neurons by cobalt backfilling the dorsal branch of the third nerve (N3 ) of abdominal ganglia 1 through 5. -
Bedrock Geology of the North Saanich-Cobble Hill Area, British Columbia, Canada
AN ABSTRACT OF THE THESIS OF John Michael Kachelmeyer for the degree ofMaster of Science in Geology presented on May 30, 1978 Title: BEDROCK GEOLOGY OF THE NORTHSAANICH-COBBLE HILL AREAS, BRITISH COLUMBIA, CANADA Abstract approved: Redacted for Privacy Keith F./Oles The bedrock of the North Saanich-Cobble Hill areas consists of igneous and sedimentary rocks of Early Jurassic through Late Cretaceous age.Early Jurassic andesitic Bonanza Volcanics are intruded by Middle Jurassic Saanich Granodiorite plutonic rocksand dikes.Late Cretaceous Nanaimo Group clastic rocksnonconformably overlie these Jurassic units.The four oldest formations of the group (Comox, Has lam, Extension-Protection, and Cedar District) are exposed within the study area. The Nanaimo Group formations were deposited within a subsid- ing marine basin (the Nanaimo Basin) located to the east ofsouthern Vancouver Island.Uplift of pre-Late Cretaceous basement rocks on Vancouver Island to the west and on mainland British Columbia tothe east of the basin created rugged, high-relief source areasthat were chemically weathered in a warm tropical climate and mechanically eroded by high-energy braided stream systems. The Comox and Has lam sediments were deposited in response to a continual transgression of a Late Cretaceous seaway overthis rugged terrain.Braided stream systems trending north-northwest into the basin deposited Comox (Benson Member) gravelsand sands onto a high-energy, cliffed shoreline.Erosion of the highlands and transgression of the marine seaway resulted in subduedtopographic relief and the deposition of sediments by low-energymeandering streams within a river traversed coastal plain, followedby silt and clay deposition in tidal flat and lagoonal environments,and finally by sand deposition in a higher energy barrier bar environment.Contin- ued marine transgression resulted in the depositionof massive marine mudstones and cyclic sandstone to mudstone sequencesof the Has lam Formation. -
Research Plans for a Mid-Depth Cabled Seafloor Observatory in Western Canada
Special Issue—Ocean Observations Research Plans for a Mid-depth Cabled Seafloor Observatory in Western Canada Verena Tunnicliffe, Richard Dewey and Deborah Smith 5912 LeMay Road, Rockville, MD 20851-2326, USA. Road, 5912 LeMay The Oceanography machine, reposting, or other means without prior authorization of portion photocopy of this articleof any by Copyrigh Society. The Oceanography journal 16, Number 4, a quarterly of Volume in Oceanography, This article has been published VENUS Project University of Victoria • Victoria BC Canada As the first cabled seafloor observatory that Primary review, conducted by CFI, was based on the involves a geographically distributed network struc- quality of science proposed and the ultimate researcher ture, the Victoria Experimental Network Under the Sea group. It is, however, only the infrastructure that is fund- (VENUS) will oversee the deployment of three pow- ed and an initial operating stage. A major challenge for ered fiber-optic cable lines in British Columbia’s (B.C.) VENUS is to find subsequent operational funds and to southern waters. The funded infrastructure will offer encourage the development of user groups. Thus, to two-way high-speed communication access and inter- write the proposal we involved the users. Over 30 scien- action in 24-hour real time from the ocean floor and tists defined the mandate for VENUS and a subset craft- water column to a land based location. With an expect- ed the proposal that requested funding for cable and ed life of at least 20 years, each cable line will have a seafloor node installations, shore stations and data man- unique set of instrument suite combinations that will agement development plus some instruments to initiate reflect the environmental processes being studied by research activity. -
SMZ Foreword
Foreword BC Spaces for Nature is a solutions-oriented, conservation organization created in 1990 to promote the protection of British Columbia’s rich diversity of wilderness and wildlife. BC Spaces works with individuals and organizations throughout the province to ensure that British Columbia’s wild spaces remain intact. Given this mandate, BC Spaces recognized the potential that Special Management Zones could make in safeguarding these values. Hence this Citizens’ Guide has been written to help the public ensure that the Special Management Zones will indeed achieve their potential. After over 125 years of forest development, British Columbia still contains extensive temperate forests. These wildlands contain an extraordinary range of plants and animals that are the envy of the world. Consequently, British Columbians have a global responsibility to steward the environmental values of our province. However, for many years British Columbia’s forests have been subjected to damaging logging practices and unsustainable overcutting. In the late 1980’s and early 1990’s, this led to increasing conflicts between the logging industry and conservationists. In places such as Carmanah Valley and Clayoquot Sound the tensions of these confrontations became intense. To help resolve these conflicts the B.C. government sponsored a series of land use planning processes to designate the landbase for the management of both economic and ecological values. The zones delineated through these public negotiation exercises included: Protected Areas, Integrated Management, Enhanced Resource Use and Special Management. In particular, the establishment of Special Management Zones to maintain and enhance values other than timber - such as environmental and social concerns - were critical to achieving success at the negotiation table.