Measuring Consciousness: Relating Behavioural and Neurophysiological Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Measuring Consciousness: Relating Behavioural and Neurophysiological Approaches TICS-697; No of Pages 8 Review Measuring consciousness: relating behavioural and neurophysiological approaches Anil K. Seth1, Zolta´ n Dienes2, Axel Cleeremans3, Morten Overgaard4 and Luiz Pessoa5 1 Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK 2 Department of Psychology, University of Sussex, Falmer, Brighton, BN1 9QJ, UK 3 Cognitive Science Research Unit, Universite´ Libre de Bruxelles CP 191, Av. F.-D. Roosevelt 50, 1050 Bruxelles, Belgium 4 Cognitive Neuroscience Research Unit, Hammel Neurorehabilitation and Research Center, Aarhus University Hospital, Voldbyvej 15, 8450 Hammel, Denmark 5 Department of Psychological and Brain Sciences, Indiana University, 1101 E10th Street, Bloomington, IN 47405, USA The resurgent science of consciousness has been accom- sizing recent contributions. We find that potential and panied by a recent emphasis on the problem of measure- actual conflicts among measures suggest new experiments ment. Having dependable measures of consciousness is (Table 1); we also assess how different measures can track essential both for mapping experimental evidence to the graded nature of conscious experience (Table 2). We theory and for designing perspicuous experiments. Here, conclude that it is only by behaving sensibly in a theoreti- we review a series of behavioural and brain-based cal context that proposed measures pick themselves up by measures, assessing their ability to track graded con- their bootstraps, both validating themselves as measures sciousness and clarifying how they relate to each other of what they say they measure and the theories involved. by showing what theories are presupposed by each. We identify possible and actual conflicts among measures Theories of consciousness that can stimulate new experiments, and we conclude Worldly discrimination theory that measures must prove themselves by iteratively Perhaps the simplest theory that still impacts the exper- building knowledge in the context of theoretical frame- imental literature is that any mental state that can works. Advances in measuring consciousness have express its content in behaviour is conscious; thus, a implications for basic cognitive neuroscience, for com- person shows they are consciously aware of a feature in parative studies of consciousness and for clinical appli- the world when they can discriminate it with choice beha- cations. viour [1,2]. This theory often makes use of signal-detection theory (SDT), a statistical framework for quantifying the The problem of measurement discriminability of a stimulus [3]. SDT itself is mute on the How can we measure whether and to what extent a subject of consciousness and can, thus, be combined with particular sensory, motor or cognitive event is consciously experienced? Such measurements provide the essential data on which the current and future science of conscious- Glossary ness depends, yet there is little consensus on how they Blindsight: the capability of some individuals with visual cortical damage to should be made. The problem of measuring consciousness perform visually guided behaviours even though they report the absence of any associated conscious content [4]. differs from the problem of identifying unconscious proces- Conscious content: the continually changing phenomenal content (e.g. ‘qualia’ sing. For instance, in subliminal perception experiments it such as redness and warmth) and intentional content (e.g. explicitly held beliefs, is desirable to know whether or not a stimulus has been conscious knowledge) that is present to varying degrees at non-zero conscious levels. consciously perceived, and in implicit learning paradigms Conscious level: applies to a whole organism and refers to a scale ranging from it is interesting to know whether the relationships between total unconsciousness (e.g. death and coma) to vivid wakefulness. A different consciously represented stimuli are uncon- ‘conscious organism’ is one that is capable of having non-zero conscious levels. An organism that is dreaming has some conscious level, although the sciously inferred. Measuring consciousness, however, conscious level is reduced in dreamless sleep. A non-zero conscious level requires saying something about conscious level (Glossary) indicates the presence of some conscious content. and conscious content beyond the zero-point of uncon- Primary consciousness: conscious content consisting of a multimodal scene composed of basic perceptual and motor events. Primary consciousness is sciousness. sometimes called ‘sensory consciousness’. By contrast, higher-order conscious- Here, we review current approaches for measuring ness refers to awareness of being in a mental state. In humans it is usually consciousness, covering both behavioural measures and associated with language and an explicit sense of selfhood. In higher-order theories it is possible to have higher-order thoughts that are not themselves measures based on neurophysiological data. We outline (higher-order) conscious, but in virtue of which other (primary) contents are a variety of broad theoretical positions before describing a conscious. Steady-state visual–evoked potential: stimulus-induced components of brain range of measures in the context of these theories, empha- signals that can be identified over extended periods of time. For example a visual image flickering at 10 Hz will evoke a response at 10 Hz in the EEG or magnetoencephalography signal, readily identifiable by a Fourier transform. Corresponding author: Seth, A.K. ([email protected]). 1364-6613/$ – see front matter ß 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tics.2008.04.008 Available online xxxxxx 1 TICS-697; No of Pages 8 Review Trends in Cognitive Sciences Vol.xxx No.x Table 1. Conflicts between measuresa Content unconscious according to: Objective Strategic control Subjective Wagering Content Objective Unconscious knowledge by In both subliminal perception Shown in blindsight and conscious Jacoby’s process dissociation and implicit learning, subjects in the Iowa gambling task according procedure is ipso facto often pass objective tasks while by [34] to: conscious by objective claiming to have no knowledge measures (e.g. Refs [60,72]) or showing no relation between confidence and accuracy (e.g. [22,73–75]) Strategic Not possible Subjects can control which Not yet shown but control grammar to employ while entirely possible (see claiming to be guessing [32] and below) hypnotized subjects can engage in strategic control while reporting no awareness [76] Subjective Not possible Shown in Stroop effects – a As yet only shown in our person can report the word’s unpublished work – a meaning but cannot control person can report its rapid use awareness but still wager indiscriminately Wagering Not possible Not yet shown but entirely Not yet shown but entirely possible (see Box 2) possible (see Box 2) Widespread Cognitive control Likely for Stroop with clearly Shown in a ‘relative blindsight’ Likely given the results activation system, including shown words [44] paradigm [31] with verbal subjective prefrontal cortex, measures, but not yet activated by objectively tested invisible stimuli [56] Synchrony g synchrony persists As left As left, also, similar levels of g As left during non-REM sleep synchrony are observed during and under anaesthesia non-REM and during (reportable) [53] REM sleep [52] Complexity Possible in theory (but As left As left As left measures see F). Not tested in practice Content unconscious according to: Widespread activation Synchrony Complexity measures Content Objective Local neuronal activity can Unlikely given current Not yet tested but entirely possible conscious support discriminatory evidence according behaviour in many non- to: conscious organisms (e.g. nematodes and worms). In humans, at least sensory and motor cortices need to be active Strategic control Unlikely: strategic control As above Possible but not tested probably requires activation in both perceptual and frontal regions Subjective As above As above As above Wagering As above As above As above Widespread Experimentally open. Some Possible in theory. Not tested activation studies show increased long- in practice range synchrony accompanying conscious access [48] Synchrony Gamma synchrony is often As above localized [47] Complexity High neural complexity (or F, Possible in theory. Not tested measures or cd) probably requires in practice widespread activity: all else being equal, larger networks will give rise to higher complexity values [17] aRows indicate a measure finds the content conscious and columns indicate the measure finds the content unconscious. Entries reflect a scale according to which a particular conflict is (i) experimentally noted, (ii) not yet shown but entirely possible, (iii) experimentally open, (iv) possible but not tested, (v) unlikely given current evidence and/or theory, or (vi) not possible. different theories. The combination of SDT with the that they can see at all. However, two properties of worldly discrimination theory (WDT) asserts that continu- blindsight indicate intuitively that the seeing is not ousinformationavailablefordiscriminationsisnecess- conscious [4]. First, blindsight patients do not spon- arily the content of conscious mental states. This theory taneously attempt to use the information practically or captures one property of conscious knowledge, namely inferentially. Second, blindsight patients themselves that it enables choice behaviour. However, rightly or think they cannot see. wrongly, it
Recommended publications
  • Cephalopods and the Evolution of the Mind
    Cephalopods and the Evolution of the Mind Peter Godfrey-Smith The Graduate Center City University of New York Pacific Conservation Biology 19 (2013): 4-9. In thinking about the nature of the mind and its evolutionary history, cephalopods – especially octopuses, cuttlefish, and squid – have a special importance. These animals are an independent experiment in the evolution of large and complex nervous systems – in the biological machinery of the mind. They evolved this machinery on a historical lineage distant from our own. Where their minds differ from ours, they show us another way of being a sentient organism. Where we are similar, this is due to the convergence of distinct evolutionary paths. I introduced the topic just now as 'the mind.' This is a contentious term to use. What is it to have a mind? One option is that we are looking for something close to what humans have –– something like reflective and conscious thought. This sets a high bar for having a mind. Another possible view is that whenever organisms adapt to their circumstances in real time by adjusting their behavior, taking in information and acting in response to it, there is some degree of mentality or intelligence there. To say this sets a low bar. It is best not to set bars in either place. Roughly speaking, we are dealing with a matter of degree, though 'degree' is not quite the right term either. The evolution of a mind is the acquisition of a tool-kit for the control of behavior. The tool-kit includes some kind of perception, though different animals have very different ways of taking in information from the world.
    [Show full text]
  • The Three Neurogenetic Phases of Human Consciousness: the Possibility of Transhuman and Posthuman Consciousness
    International Journal of Arts & Sciences, CD-ROM. ISSN: 1944-6934 :: 07(02):381–394 (2014) Copyright c 2014 by UniversityPublications.net THE THREE NEUROGENETIC PHASES OF HUMAN CONSCIOUSNESS: THE POSSIBILITY OF TRANSHUMAN AND POSTHUMAN CONSCIOUSNESS John K. Grandy In previous works, the first neurogenetic account of human consciousness has been established and was delineated into three distinct phases- the emergence of neuron-based consciousness, the continuum of neuron-based consciousness, and neurodegeneration [1, 2].In this model, DNA consciousness gives rise to human consciousness in the form of neurogenetic correlates of consciousness (NgCC) and then the NgCC underlying the neurons provide continuous activity during the conscious experience. This engenders a continuum of neuron-based consciousness working in tandem with a neurogenetic substructure. Unfortunately, later in life the neurons wear down and modalities of human consciousness are decreased or lost [3]. This loss can proceed in an age-related fashion as seen in mild cognitive impairment or this process can have a genetic component as seen in Alzheimer disease (AD). Currently, genetic experiments are underway to reverse some of the symptoms of AD, e.g., the FGF-2 gene transfer for memory improvement in mice with AD [4]. However, in the future can this, or similar, genetic therapies be used to enhance human consciousness in patients without AD? Would this be the first steps into posthuman consciousness? In 2009, it was proposed and supported that genetic engineering technology may provide the opportunity for a selected genetic destination [5] .This would make it possible to select a phenotype or genetic endpoint and make it possible in any organism including humans.
    [Show full text]
  • A Theory of Consciousness: Computation, Algorithm, and Neurobiological Realization
    Preprint (version 20 June 2019) A theory of consciousness: computation, algorithm, and neurobiological realization J. H. van Hateren Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands; [email protected] Abstract The most enigmatic aspect of consciousness is the fact that it is felt, as a subjective sensation. The theory proposed here aims to explain this particular aspect. The theory encompasses both the computation that is presumably involved and the way in which that computation may be realized in the brain’s neurobiology. It is assumed that the brain makes an internal estimate of an individual’s own evolutionary fitness, which can be shown to produce a special, distinct form of causation. Communicating components of the fitness estimate (either for external or internal use) requires inverting them. Such inversion can be performed by the thalamocortical feedback loop in the mammalian brain, if that loop is operating in a switched, dual-stage mode. A first (nonconscious) stage produces forward estimates, whereas the second (conscious) stage inverts those estimates. It is argued that inversion produces another special, distinct form of causation, which is spatially localized and is plausibly sensed as the feeling of consciousness. Keywords Consciousness · Sentience · Evolution · Fitness · Estimation · Thalamocortical 1 Introduction The terms ‘consciousness’ and ‘conscious’ have various meanings. They may refer to the state of being awake (as in ‘regaining consciousness’), the process of gaining access to certain facts as they affect the senses or are retrieved from memory (as in ‘becoming conscious of something’), and the subjective sensation associated with experiencing (e.g., when feeling pain or joy, and when undergoing a visual experience).
    [Show full text]
  • Theoretical Models of Consciousness: a Scoping Review
    brain sciences Review Theoretical Models of Consciousness: A Scoping Review Davide Sattin 1,2,*, Francesca Giulia Magnani 1, Laura Bartesaghi 1, Milena Caputo 1, Andrea Veronica Fittipaldo 3, Martina Cacciatore 1, Mario Picozzi 4 and Matilde Leonardi 1 1 Neurology, Public Health, Disability Unit—Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; [email protected] (F.G.M.); [email protected] (L.B.); [email protected] (M.C.); [email protected] (M.C.); [email protected] (M.L.) 2 Experimental Medicine and Medical Humanities-PhD Program, Biotechnology and Life Sciences Department and Center for Clinical Ethics, Insubria University, 21100 Varese, Italy 3 Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; veronicaandrea.fi[email protected] 4 Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, 21100 Varese, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2709 Abstract: The amount of knowledge on human consciousness has created a multitude of viewpoints and it is difficult to compare and synthesize all the recent scientific perspectives. Indeed, there are many definitions of consciousness and multiple approaches to study the neural correlates of consciousness (NCC). Therefore, the main aim of this article is to collect data on the various theories of consciousness published between 2007–2017 and to synthesize them to provide a general overview of this topic. To describe each theory, we developed a thematic grid called the dimensional model, which qualitatively and quantitatively analyzes how each article, related to one specific theory, debates/analyzes a specific issue.
    [Show full text]
  • Neurobiological Theories of Consciousness. In
    CONS: 00055 a0005 Neurobiological Theories of Consciousness S Kouider, Laboratoire des Sciences Cognitives et Psycholinguistique, CNRS/EHESS/ENS-DEC, Paris, France ã 2009 Elsevier Inc. All rights reserved. Cognitive Influences on Neurobiological Glossary s0010 Accounts g0005 Neural correlates of consciousness –They p0010 are defined by Christoph Koch as ‘‘The Regarding the influence of cognitive theories, minimal set of neuronal mechanisms or the majority of neurobiological accounts can be events jointly sufficient for a specific seen, in fact, as extensions of preexisting cognitive conscious percept or experience.’’ They theories (e.g., for instance global workspace the- allow to avoid the difficult problem of directly ories). Indeed, one of the main tasks exercised by looking for neural bases. neurobiologists in the last two decades has been to search for cerebral or neuronal equivalents to the g0010 Panpsychism – Reflects the philosophical functional elements constituting cognitive models doctrine that everything (in Greek, ‘pan’) has PROOF a mind (‘psyche’) and is therefore conscious. (e.g., the dorsolateral prefrontal cortex for volun- Some theories presented in this article tary control, or long range axons for connecting endorse a certain form of panpsychism in brain regions associated with ‘unconscious’ and which anything that transmits information is ‘conscious’ processing). Of course, many neuro- in a way conscious. biologists disagree with this approach. Conscious- ness, because it is a biological problem, should be g0015 The hard problem – It is the problem of explaining how and why we have the reframed the other way around, by focusing pri- subjective experience of consciousness. It is marily on its structural basis rather than relying on often contrasted with the easy problem, cognitive theories, often considered too specula- which consists of describing consciousness tive.
    [Show full text]
  • Functions of Consciousness 1.0 Introduction
    Functions of Consciousness1 Anil Seth Department of Informatics, University of Sussex, Brighton, BN1 9QJ, UK Email: [email protected] Web: www.anilseth.com Tel: +44 1273 678549 Fax: +44 1273 678773 December 6, 2008 “The consciousness of brutes would appear to be related to the mechanism of their body simply as a collateral product of its working, and to be completely without any power of modifying that working, as the steam-whistle which accompanies the work of a locomotive engine is without influence upon its machinery.” (Thomas Huxley, quoted in James, 1890, p.135). “The particulars of the distribution of consciousness, so far as we know them, point to its being efficacious … it seems an organ, superadded to other organs which maintain the animal in the struggle for existence; and the presumption of course is that it helps him in some way in the struggle …” (James, 1890). 1.0 Introduction A major challenge for the successful naturalization of consciousness lies in locating its biological function, or functions. Although common sense suggests that conscious experience has many important functional roles in our lives, experiments and theoretical arguments challenge these everyday intuitions. Many human behaviors can occur in the absence of consciousness, and the natural world contains many creatures capable of engaging in complex behaviors, at least some of which may be doing so entirely without consciousness (e.g., mollusks, microorganisms). While consciousness is a real phenomenon whether functional or not, without any defensible function its scientific study is made even more difficult than it already is (Chalmers 1996; Humphrey 2002).
    [Show full text]
  • Consciousness and Reflective Consciousness
    Philosophical Psychology Vol. 18, No. 2, April 2005, pp. 205–218 Consciousness and Reflective Consciousness Mark H. Bickhard An interactive process model of the nature of representation intrinsically accounts for multiple emergent properties of consciousness, such as being a contentful experiential flow, from a situated and embodied point of view. A crucial characteristic of this model is that content is an internally related property of interactive process, rather than an externally related property as in all other contemporary models. Externally related content requires an interpreter, yielding the familiar regress of interpreters, along with a host of additional fatal problems. Further properties of consciousness, such as differentiated qualities of experience, including qualia, emerge with conscious reflection. In particular, qualia are not constituents or direct properties of consciousness per se. Assuming that they are so is a common and ultimately disastrous misconstrual of the problems of consciousness. 1. The Normativity of Representational Content There are multiple problems of consciousness (for relevant discussions, see, e.g. Block, Flanagan, & Gizeldere, 1997; Tye, 1995), but, so I argue, they are not problems of a unitary mental process. I outline a model of two related processes and show how properties of consciousness are distributed between them.1 Further, conceptual conflations between these two realms yield much of what is so hard about ‘the problem of consciousness’. I begin with what might be called a model of awareness, or primary consciousness. This model has been presented multiple times elsewhere, so I will provide only a brief outline here (Bickhard, 1980b, 1993, 1996, 1998, 1999, 2000a, 2003a, 2004; Bickhard & Terveen, 1995).
    [Show full text]
  • A Traditional Scientific Perspective on the Integrated Information Theory Of
    entropy Article A Traditional Scientific Perspective on the Integrated Information Theory of Consciousness Jon Mallatt The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844, USA; [email protected] Abstract: This paper assesses two different theories for explaining consciousness, a phenomenon that is widely considered amenable to scientific investigation despite its puzzling subjective aspects. I focus on Integrated Information Theory (IIT), which says that consciousness is integrated information (as φMax) and says even simple systems with interacting parts possess some consciousness. First, I evaluate IIT on its own merits. Second, I compare it to a more traditionally derived theory called Neurobiological Naturalism (NN), which says consciousness is an evolved, emergent feature of complex brains. Comparing these theories is informative because it reveals strengths and weaknesses of each, thereby suggesting better ways to study consciousness in the future. IIT’s strengths are the reasonable axioms at its core; its strong logic and mathematical formalism; its creative “experience- first” approach to studying consciousness; the way it avoids the mind-body (“hard”) problem; its consistency with evolutionary theory; and its many scientifically testable predictions. The potential weakness of IIT is that it contains stretches of logic-based reasoning that were not checked against hard evidence when the theory was being constructed, whereas scientific arguments require such supporting evidence to keep the reasoning on course. This is less of a concern for the other theory, NN, because it incorporated evidence much earlier in its construction process. NN is a less mature theory than IIT, less formalized and quantitative, and less well tested.
    [Show full text]
  • An Account of Consciousness in Physical and Functional Terms: a Target for Research in the Neurosciences
    Editorial Note: The two papers that follow hark back in a sense to the early days of brain-body biology, when observation and logic were the available tools for constructing a theory. Prior to the development of tools and techniques for experimentation on the ner- vous system, correct prediction of outcome was the best available confirmation of a theory. Not surprisingly, at the time it was the mathematician-philosophers who were doing the inquiry and building the theories. Notable among them was Christian Wolff in his Prolegomena to Empirical Psychology and Rational Psychology. The former book was originally published in 1732 and the latter in 1734. Wolff's contribution was to relate the method of studying psychology to that of physics. He sought to establish laws of sensation, memory, emotion, understanding, and behavior. Johann Friederich Herbart further devel- oped Wolff's measuring methods, and Wilhelm Wundt, who considered Wolff "the most influential psychological systematist among moderns," used Wolff's ideas to develop his psychophysics. More recently, it has again been physicists studying complexity who are among those who are beginning to develop noninvasive experimental methods to test theories of brain organization and function. The paper by Sommerhoff and MacDorman that follows presents a theory about con- sciousness, perhaps the most elusive but basically an important function of the brain. The subsequent article by Rotenberg presents a theory of monoamine metabolism in relation to REM sleep to explain the antidepressive effects of drugs based on what he calls a "search activity" concept, i.e., the effect of changing attitudes or behavior on brain monamines and calcium.
    [Show full text]
  • Consciousness As Integrated Perception, Motivation, Cognition, and Action
    Shanahan, Murray (2016) Consciousness as integrated perception, motivation, cognition, and action. Animal Sentience 9(12) DOI: 10.51291/2377-7478.1145 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2016.122: Shanahan on Klein & Barron on Insect Experience Consciousness as integrated perception, motivation, cognition, and action Commentary on Klein & Barron on Insect Experience Murray Shanahan Department of Computing Imperial College London Abstract: This commentary has two aims: first to clarify the behavioural grounds for the ascription of consciousness to non-human animals (including insects), and second to show how Klein & Barron’s views can be reconciled with the core claims of global workspace theory. Murray Shanahan, Professor of Cognitive Robotics, Imperial College London, is interested in the principles that underlie sophisticated cognition, both as it is found in Nature and as it might be realised artificially. https://www.doc.ic.ac.uk/~mpsha/ 1. Behavioural Hallmarks of Consciousness in Other Animals In due course I’m going to discuss the brains of invertebrates and Klein & Barron’s (K & B, 2016) claim that insects have the capacity for subjective experience. But first I want to talk about the behaviour of cats. What is it that convinces us, without recourse to neuroscience, that we are in the company of a fellow conscious creature when we are with a domestic animal such as a cat? A child might be taken in by doleful eyes and soft fur (features lacking in insects).
    [Show full text]
  • Mind, Brain and Altered States of Consciousness
    Acta Medica Mediterranea, 2018, 34: 357 MIND, BRAIN AND ALTERED STATES OF CONSCIOUSNESS MAURO N. MALDONATO1,3,§, RAFFAELE SPERANDEO2,3,§, SILVIA DELL’ORCO3, DANIELA IENNACO1, FRANCESCO CERRONI4, PALMIRA ROMANO4, MARGHERITA SALERNO6, AGATA MALTESE6, MICHELE ROCCELLA6, LUCIA PARISI6, GABRIELE TRIPI7, FIORENZO MOSCATELLI8, FRANCESCO SESSA8, SALERNO MONICA8, GIUSEPPE CIBELLI8, GIOVANNI MESSINA8, MARCELLINO MONDA9, SERGIO CHIEFFI9, INES VILLANO9, VINCENZO MONDA9, ANTONIETTA MESSINA9, MARIA RUBERTO10, GABRIELLA MARSALA11, ANNA VALENZANO8,*, ROSA MAROTTA5 1Università di Napoli Federico II - 2SIPGI Scuola di Specializzazione in Psicoterapia Gestaltica Integrata - 3Università della Basilicata - 4Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Italy - 5Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy - 6Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy - 7Child Neuropsychiatry, Department of Psychology and Pedagogical Sciences, University of Palermo, Palermo, Italy - 8Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy - 9Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy - 10Centro CRD, Santa Maria del Pozzo, Somma Vesuviana, Naples - 11Struttura Complessa di Farmacia, Azienda Ospedaliero-Universitaria,
    [Show full text]
  • The Nature of Primary Consciousness. a New Synthesis ⇑ Todd E
    Consciousness and Cognition 43 (2016) 113–127 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Review article The nature of primary consciousness. A new synthesis ⇑ Todd E. Feinberg a, , Jon Mallatt b a Icahn School of Medicine at Mount Sinai and Mount Sinai Beth Israel Medical Center, New York 10003, USA b School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA article info abstract Article history: While the philosophical puzzles about ‘‘life” that once confounded biology have all been Received 7 April 2016 solved by science, much of the ‘‘mystery of consciousness” remains unsolved due to mul- Accepted 20 May 2016 tiple ‘‘explanatory gaps” between the brain and conscious experience. One reason for this impasse is that diverse brain architectures both within and across species can create con- sciousness, thus making any single neurobiological feature insufficient to explain it. We Keywords: propose instead that an array of general biological features that are found in all living Primary consciousness things, combined with a suite of special neurobiological features unique to animals with Neurobiological naturalism consciousness, evolved to create subjective experience. Combining philosophical, neurobi- Explanatory gaps Hard problem ological and evolutionary approaches to consciousness, we review our theory of neurobio- Subjectivity logical naturalism that we argue closes the ‘‘explanatory gaps” between the brain and Evolution subjective experience and naturalizes the ‘‘experiential gaps” between subjectivity and third-person observation of the brain. Ó 2016 Elsevier Inc. All rights reserved. Contents 1. Introduction: What makes consciousness unique? The explanatory gap, the hard problem, and neurobiological naturalism.
    [Show full text]