Talk #6 Fast Radio Burst

Total Page:16

File Type:pdf, Size:1020Kb

Talk #6 Fast Radio Burst FAST RADIO BURST Nandini Chatterjee Credit: M. Weiss CfA WHAT ARE FAST RADIO BURSTS? • Powerful flashes of light known as fast radio burst (FRBs) • Radio emissions / radio brightness • Lasts about a second, disappears, and never repeats • Only one of the sources have been localized so far • First described in 2007 • FRB are named ‘FRB YYMMDD’ • Example: FRB 010724 • Found more than 2 dozen Credit: Jingchuan Yu, Beijing Planetarium WHAT CAUSES FAST RADIO BURSTS? • Hypothesis 1: Explosions driven by young, fast- spinning neuron stars with strong magnetic fields • Hypothesis 2: Explosion of a star • Hypothesis 3: Black holes combining together can create radio flashes • Hypothesis 4: Generated by intelligent aliens • Hypothesis 5: Blitzar Credit: Space.com BREAKTHROUGH LISTEN • Announced in July 2015 • Goal: Looking for signs of intelligent alien life • Scans the nearest million stars in the Milky Way and star in 100 other galaxies • Cost: $100 million project • Parkes Telescope in Australia is also involved Credit: National Radio Astronomy Credit: Commonwealth Scientific and Observatory Industrial Research Organization Credit: Breakthrough FRB 121102 Listen/UC Berkeley • A dwarf galaxy discovered Nov. 2, 2012 • 3 billion light years away from Earth • Green Bank Telescope detected 15 new pulses high of frequency (August 26) • Brightest emission at around 7 GHz • Source is newly active • Measurement of the properties of these bursts Credit: ASTRON, the Netherlands Institute for Radio Astronomy WHICH HYPOTHESES HAVE BEEN RULED OUT? • The supermassive black hole hypothesis • The intelligent aliens hypothesis • The Blitzar hypothesis Credit: M. Weiss/CfA EARLIER OCCURRENCES 1 2 3 4 August 24, Smallest Largest FRB detected 2001: 5- wavelength wavelength 6 billion light millisecond dispersion dispersion years away burst burst burst WHY IS FRB IMPORTANT? • Sort out source which are unknown • Increase the number that we discover • Approximately 25,000 flashes each day • Hope to discover at least 10 flashes per day • Learn about the universe’s evolution • Better understanding of the “reionization” • Universe Mapping • Study the magnetic fields • Study turbulence & the materials between Earth and the sources Credit: NASA/WMAP Science Team CITATIONS • Billings, Lee. “A Brilliant Flash, Then Nothing: New.” Scientific American, 9 July 2013, www.scientificamerican.com/article/a-brilliant-flash-then- nothing-new-fast-radio-bursts-mystify-astronomers/. • Drake, Nadia. “Storm of Strange Radio Bursts Emerges From Deep Space.” National Geographic, National Geographic Society, 1 Sept. 2017, news.nationalgeographic.com/2017/09/radio-bursts-galaxy-space-breakthrough-listen-science/. • “Fast Radio Bursts May Be Firing Off Every Second.” Www.cfa.harvard.edu/, Harvard-Smithsonian Center for Astrophysics (CfA), 21 Sept. 2017, www.cfa.harvard.edu/news/2017-28. • “Green Bank Telescope Joins ‘Breakthrough Listen.’” National Radio Astronomy Observatory, National Radio Astronomy Observatory, 20 July 2015, public.nrao.edu/news/gbt-breakthrough-listen/. • Kohler, Susanna. “A New Clue in the Mystery of Fast Radio Bursts.” AAS Nova, 28 June 2017, aasnova.org/2017/06/28/a-new-clue-in-the-mystery- of-fast-radio-bursts/. • Sanders, Robert. “Distant Galaxy Sends out 15 High-Energy Radio Bursts.” Berkeley News, 1 Sept. 2017, news.berkeley.edu/2017/08/30/distant- galaxy-sends-out-15-high-energy-radio-bursts/. • Spaleta, Steve. “Mysterious 'Fast Radio Burst' Source Detected.” Space.com, Space.com, 2 Dec. 2016, www.space.com/31250-mysterious-fast- radio-burst-source-detected-video.html. • Wall, Mike. “Could Mysterious Cosmic Light Flashes Be Powering Alien Spacecraft?”Space.com, Space.com, 9 Mar. 2017, www.space.com/35996-fast-radio-bursts-powering-alien-spacecraft.html. • Wall, Mike. “$100 Million E.T. Hunt Spots 15 Mysterious Light Flashes.” Space.com, Space.com, 30 Aug. 2017, www.space.com/37992-fast-radio- bursts-breakthrough-listen.html. • Wall, Mike. “Fast Radio Bursts Flash throughout the Cosmos.” Scientific American, Scientific American, 26 Sept. 2017, www.scientificamerican.com/article/fast-radio-bursts-flash-throughout-the-cosmos/. • “Welcome to the CSIRO Parkes Observatory.” CSIRO Parkes Observatory | Australia Telescope National Facility, Commonwealth Scientific and Industrial Research Organization, www.parkes.atnf.csiro.au/..
Recommended publications
  • Fast Radio Bursts: from a Handful to Hundreds with Chime/Frb
    FAST RADIO BURSTS: FROM A HANDFUL TO HUNDREDS WITH CHIME/FRB KIYOSHI MASUI, ALEX JOSEPHY, AND MOHIT BHARDWAJ FOR THE CHIME/FRB COLLABORATION AAS PRESS BRIEFING JUNE 9, 2021 Correspondance to: [email protected] (857) 207-6121 FAST RADIO BURSTS Bright, brief (millisecond) flashes of radio light coming from other galaxies Likely neutron star/magnetar origin but otherwise poorly understood, limited by small numbers Distortion of signals (dispersion) carries record of structure travelled through CHIME/FRB COLLABORATION ARTWORK: ESA CANADIAN HYDROGEN INTENSITY MAPPING EXPERIMENT FAST RADIO BURST INSTRUMENT (CHIME/FRB) CHIME/FRB COLLABORATION chime-experiment.ca CHIME/FRB CATALOG MAP OF EVERY KNOWN FRB UP TO JULY 2018 CHIME/FRB COLLABORATION CHIME/FRB CATALOG MAP OF EVERY KNOWN FRB UP TO JULY 2019 CHIME/FRB COLLABORATION CATALOG CONTENTS 535 FRBs observed between July 2018 and July 2019 Includes 61 bursts from 18 repeating sources Properties of each burst: time, sky location, brightness, duration, dispersion, etc. See CHIME/FRB Collaboration 2021 CHIME/FRB COLLABORATION A NEW PHASE OF FRB SCIENCE First large sample of FRBs Enables precision studies of the FRB Population Opportunity to study large- scale structure of the Universe CHIME/FRB COLLABORATION POPULATION MODELLING Simulating fake bursts allows us to understand our observational biases Measure brightness distribution and rate: ~800 bright FRBs per day CHIME/FRB COLLABORATION SKY DISTRIBUTION Must consider sensitivity, telescope response, and galactic foreground. After correcting for these effects, we find strong evidence for uniform distribution. See: Josephy et al. 2021 CHIME/FRB COLLABORATION LARGE SCALE STRUCTURE Find FRBs to be correlated with galaxies, for a wide redshift range Ushering in new era of FRB cosmology See: Rafiei-Ravandi et al.
    [Show full text]
  • One Or Several Populations of Fast Radio Burst Sources?
    One or several populations of fast radio burst sources? M. Caleb1, L. G. Spitler2 & B. W. Stappers1 1Jodrell Bank Centre for Astrophysics, the University of Manchester, Manchester, UK. 2Max-Planck-Institut fu¨r Radioastronomie, Bonn, Germany. arXiv:1811.00360v1 [astro-ph.HE] 1 Nov 2018 1 To date, one repeating and many apparently non-repeating fast radio bursts have been de- tected. This dichotomy has driven discussions about whether fast radio bursts stem from a single population of sources or two or more different populations. Here we present the arguments for and against. The field of fast radio bursts (FRBs) has increasingly gained momentum over the last decade. Overall, the FRBs discovered to date show a remarkable diversity of observed properties (see ref 1, http://frbcat.org and Fig. 1). Intrinsic properties that tell us something about the source itself, such as polarization and burst profile shape, as well as extrinsic properties that tell us something about the source’s environment, such as the magnitude of Faraday rotation and multi-path propagation effects, do not yet present a coherent picture. Perhaps the most striking difference is between FRB 121102, the sole repeating FRB2, and the more than 60 FRBs that have so far not been seen to repeat. The observed dichotomy suggests that we should consider the existence of multiple source populations, but it does not yet require it. Most FRBs to date have been discovered with single-pixel telescopes with relatively large angular resolutions. As a result, the non-repeating FRBs have typically been localized to no bet- ter than a few to tens of arcminutes on the sky (Fig.
    [Show full text]
  • What Can Fast Radio Bursts Teach Us About Magnetars?
    What Can Fast Radio Bursts Teach Us About Magnetars? Fast radio bursts (FRBs) are mysterious pulses of radio emission that last only milliseconds, but put out as much energy as our sun produces over several days. Astrophysicists have many reasons to think they originate from magnetars, highly magnetized neutron stars. A magnetar may have a magnetic field of 10^14 Gauss, thousands of times stronger than a typical neutron star (just for comparison, the magnetic field of the sun is about 5 Gauss). What can we learn about magnetars from FRBs, considering the firehose of data expected in the next decade? As brief as FRB’s are, there are features in the radio emission that can be quasi-periodic and may be caused by oscillations of the crust and even core of the magnetar. We find some of these reported "trains" of FRBs are consistent with twisting “torsional” oscillations of magnetars seen in our galaxy. It is possible that FRBs offer opportunities to study the crust and internal structure of magnetars and could help constrain the distance of some of these objects. If our interpretation is correct, it represents a revolution in our ability to study magnetars. By combining observations from radio, gamma-rays and x-rays, we may be able to test our models of the interiors of some of the most dramatic objects in the universe, providing a laboratory of fundamental physics in extreme conditions. We expect a large amount of data from these objects in the next few years, but we’ll particularly require more detailed radio observations to further understand them.
    [Show full text]
  • Fast Radio Burst and Non-Thermal Afterglow from Binary Neutron Star Mergers
    Fast Radio Burst and Non-thermal Afterglow from Binary Neutron Star Mergers 戸谷友則 (TOTANI, Tomonori) Dept. Astronomy, Univ. Tokyo Outline • Three recent papers by my students: • repeating and non-repeating FRBs from binary neutron star mergers • Yamasaki, TT, & Kiuchi ’18, PASJ, 70, 39 • A new, more natural modeling of electron energy distribution for the non- thermal afterglow of GW 170817 • Lin, TT, & Kiuchi ’18, arXiv:1810.02587 • IceCube neutrinos from cosmic-rays in star-forming galaxies: a latest calculation by cosmological galaxy formation model • Sudoh, TT, & Kawanaka ’18, PASJ, 70, 49 • repeating and non-repeating FRBs from binary neutron star mergers • Shotaro Yamasaki, TT, & Kiuchi ’18, PASJ, 70, 39 Fast Radio Bursts: A New Transient Population at Cosmological Distances ✦ intrinsic pulse width <~ 1 msec (observed width broadened by scattering) ✦ event rate ~ 103-4 /sky /day ✦ large dispersion measure implies z ~ 1 Thoronton What’s the origin of FRBs? ✦ FRB 121102 is a repeater! ✦ most likely a young neutron star ✦ only one FRB detected by Arecibo (the faintest flux) ✦ dwarf, star-forming host galaxy identified at z = 0.19 ✦ strong persistent radio flux detected (180 uJy, size < 0.7 pc) ✦ only one case of confirmed repeating FRB: a different population from others? ✦ some FRBs show low rotation measure (e.g., FRB 150807, Ravi+’16) ✦ highly magnetized environment like young supernova remnants or dense star forming regions not favored ✦ clean environment such as neutron-star merger? ✦ FRB 171020 does not have any persistent radio counterpart similar to FRB 121102 (Mahony+’18) (non-repeating) FRBs from NS-NS mergers TT 2013, PASJ, 65, L12 ✦ FRB rate vs.
    [Show full text]
  • Detection of a Type Iin Supernova in Optical Follow-Up Observations of Icecube Neutrino Events Magellan Workshop, 17–18 March 2016, DESY Hamburg
    Detection of a Type IIn Supernova in Optical Follow-Up Observations of IceCube Neutrino Events Magellan Workshop, 17{18 March 2016, DESY Hamburg Markus Voge, Nora Linn Strotjohann, Alexander Stasik 17 March 2016 Target: transient sources (< 100 s • neutrino burst): GRBs (Waxman & Bahcall 1997, Murase • & Nagataki 2006) SNe with jets (Razzaque, Meszaros, • Waxman 2005) More exotic phenomena? E.g. Fast • Radio Bursts (FRBs)? (Falcke & Rezzolla 2013) Online Neutrino Analysis Automatic search for interesting IceCube neutrino events • Realtime alerts sent to follow-up instruments • Multi-messenger: Combination with other data fruitful • Follow-up ensures access to data • 2 / 15 Online Neutrino Analysis Automatic search for interesting IceCube neutrino events • Realtime alerts sent to follow-up instruments • Multi-messenger: Combination with other data fruitful • Follow-up ensures access to data • Target: transient sources (< 100 s • neutrino burst): GRBs (Waxman & Bahcall 1997, Murase • & Nagataki 2006) SNe with jets (Razzaque, Meszaros, • Waxman 2005) More exotic phenomena? E.g. Fast • Radio Bursts (FRBs)? (Falcke & Rezzolla 2013) 2 / 15 The OFU and XFU system SN/GRB PTF (optical) Swift (X-ray) Alerts Alerts Madison/Bonn Iridium IceCube arXiv: 1309.6979 (p.40) 3 / 15 Online analysis scheme neutrino purity At least 8 coincident Trigger Level 0:0001% hits 2000 Hz ∼ Basic muon event se- Level 1 35 Hz 0:01% lection (tracks only) ∼ Up-going tracks Level 2 2 Hz 0:1% ∼ Neutrino selection OFU Level 3 mHz 90% (BDT) ∼ Neutrino multiplet ( 2ν): ≥ Time
    [Show full text]
  • The Discovery of Frbs
    Credit: Swinburne in Fast Radio Burst detection detection Burst FastRadio in Strategic uses of single dishes (and GB) (and singledishes uses of Strategic DuncanLorimer, Dept. Physics and of Astronomy, WestVirginia University FRB lowdown • 21 published so far • Flux > 0.5 Jy @ 1.4 GHz • Pulse widths > few ms • Highly dispersed • Weakly scattered • One FRB so far repeats! • Few arcmin localization • One counterpart so far • ~few x 1000/day/sky Credit: Thornton et al. (2013) What might FRBs probe? • New/exciting physics • Cosmological NS census? • Non-stellar origin? • Fundamental tests? • The intergalactic medium • Electron content → missing baryons? • Magnetic field || to line of sight • Cosmology • Rulers • DM halos, DM/DE parameterization Single-pulse search pipeline DM Cordes & McLaughlin (2003) Credit: Spitler et al. (2014) 2014: FRB 121102 at Arecibo at FRB 121102 2014: Credit: Masui et al. (2015) 2015: FRB 110523 at GBT at FRB 110523 2015: • More “theories” than bursts! • Colliding compact objects (e.g. NS-NS) • Supernovae • Collapsing NS → BH (blitzar) • Black hole absorbing NSs • Giant pulses from pulsars/magnetars • Neutron star – asteroid belt interaction • More exotic (strange) star interactions • Galactic Flare Stars • Light sails from ET • Dark matter • Cosmic strings • White holes No! Maybe? No! → → → or maybesomethingor else? … … 2016: FRB 121102 repeats! 121102 FRB 2016: Credit: Spitler et al. and Scholz et al. (2016) 2017: FRB 121102 localized! Credit: NRAO Credit: Chatterjee et al. (2017) z = 0.19 (2.3 billion yr) We
    [Show full text]
  • Search for Neutrino Emission from Fast Radio Bursts with Icecube
    Search for Neutrino Emission from Fast Radio Bursts with IceCube Donglian Xu Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish for the IceCube Collaboration TeV Particle Astrophysics (TeVPA) 2017 August 7 - 11, 2017 | Columbus, Ohio Fast Radio Bursts - Discovery in 2007 2 e2 Lorimer et al.,Science 318 (5851): 777-780 2 ∆tdelay = 3 DM w− 2⇡mec · · 24 2 =1.5 10− s DM w− ⇥ · · 3 DM = n dl = 375 1cm− pc e ± Z “very compact” SMC J0045−7042 (70) J0111−7131 (76) J0113−7220 (125) “extragalactic”? J0045−7319 (105) J0131−7310 (205) Figure 2: Frequency evolution and integrated pulse shape of!the radio burst.4 The.8 survey0.4 data, collected on 2001δ Augusttwidth 24, are=4 shown. here6 ms as a two-dimensio ( nal ‘waterfall)− plot’± of intensity as a function of radio frequency versus time. The dispersion1.4GHzis clearly seen as a quadratic sweep across the frequency band, with broadening towards lower frequencies. From a measurement of the pulse delay across the receiver band using standard pulsar timing techniques, we determine the DM to be 375 dtI1 cm−3!pc. The two150 white lines50Jy separated byms 15 ms @ that 1 bound.4 GHz the pulse show the expected behavior± for the' cold-plasma dispersion± law assuming a DM of 375 cm−3 pc. The horizontal line at 1.34 GHz is an artifact in the data caused by a malfunctioning frequency Z ∼ channel. This plot is for one of the offset beams in which the digitizers were not saturated. By splitting the data into four frequency sub-bands we have measured both the half-power Galactic DM: pulse width• andA fluxtotal density spectrumof ~ over23 the observingFRBs bandwidth.
    [Show full text]
  • Neutron Star Collapse Times, Gamma-Ray Bursts and Fast Radio Bursts
    MNRAS 441, 2433–2439 (2014) doi:10.1093/mnras/stu720 The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts ‹ Vikram Ravi1,2 and Paul D. Lasky1 Downloaded from https://academic.oup.com/mnras/article-abstract/441/3/2433/1126394 by California Institute of Technology user on 24 June 2019 1School of Physics, University of Melbourne, Parkville, VIC 3010, Australia 2CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia Accepted 2014 April 8. Received 2014 April 7; in original form 2013 November 29 ABSTRACT Recent observations of short gamma-ray bursts (SGRBs) suggest that binary neutron star (NS) mergers can create highly magnetized, millisecond NSs. Sharp cut-offs in X-ray afterglow plateaus of some SGRBs hint at the gravitational collapse of these remnant NSs to black holes. The collapse of such ‘supramassive’ NSs also describes the blitzar model, a leading candidate for the progenitors of fast radio bursts (FRBs). The observation of an FRB associated with an SGRB would provide compelling evidence for the blitzar model and the binary NS merger scenario of SGRBs, and lead to interesting constraints on the NS equation of state. We predict the collapse times of supramassive NSs created in binary NS mergers, finding that such stars collapse ∼10–4.4 × 104 s (95 per cent confidence) after the merger. This directly impacts observations targeting NS remnants of binary NS mergers, providing the optimal window for high time resolution radio and X-ray follow-up of SGRBs and gravitational wave bursts.
    [Show full text]
  • Pos(HEPRO VII)048
    Synchrotron Maser From Weakly Magnetised Neutron Stars As The Emission Mechanism Of Fast PoS(HEPRO VII)048 Radio Bursts Killian Long∗ University College Cork, Ireland E-mail: [email protected] Asaf Pe’er Bar Ilan University, Israel E-mail: [email protected] The origin of Fast Radio Bursts (FRBs) is still mysterious. All FRBs to date show extremely high brightness temperatures, requiring a coherent emission mechanism. Using constraints derived from the physics of one of these mechanisms, the synchrotron maser, as well as observations, we show that accretion induced explosions of neutron stars with surface magnetic fields of B∗ . 1011 G are favoured as FRB progenitors. High Energy Phenomena in Relativistic Outflows VII - HEPRO VII 9-12 July 2019 Facultat de FÃ sica, Universitat de Barcelona, Spain ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Synchrotron Maser From Weakly Magnetised Neutron Stars As The Emission Mechanism Of Fast Radio Bursts Killian Long 1. Introduction Fast Radio Bursts (FRBs) are bright radio transients of millisecond duration. A total of 98 FRBs have been published to date (1)1. They have typical fluxes of ∼ 1Jy and are distinguished by their large dispersion measures (DM). These are in the range 176pc cm−3 to 2596pc cm−3, an order of magnitude greater than values expected from Milky Way electrons (1; 2), suggesting an extragalactic origin for FRBs. Of the 98 FRBs to date, 11 have been observed to repeat.
    [Show full text]
  • 81 EMBARGOED UNTILLTHURSDAY JULY 4 20:00 CET Nijmegen, July 2, 2013 Farewell Greeting from a Dying Star
    PB 2012 - 81 EMBARGOED UNTILLTHURSDAY JULY 4 20:00 CET Nijmegen, July 2, 2013 Farewell greeting from a dying star – Scientists suggest explanation for mysterious radio flashes Mysterious bright radio flashes that appear for only a brief moment on the sky and do not repeat could be the final farewell greetings of a massive star collapsing into a black hole, astronomers from Nijmegen and Potsdam argue. Radio telescopes have picked up some bright radio flashes that appear for only a brief moment on the sky and do not repeat. Scientists have since wondered what causes these unusual radio signals. An article in this week’s issue of ‘Science’ suggests that the source of the flashes lies deep in the early cosmos, and that the short radio burst are extremely bright. However, the question of which cosmic event could produce such a bright radio emission in such a short time remained unanswered. The astrophysicists Heino Falcke from Radboud University Nijmegen and Luciano Rezzolla from the Max Planck Institute for Gravitational Physics in Potsdam provide a solution for the riddle. They propose that the radio bursts could be the final farewell greetings of a supramassive rotating neutron star collapsing into a black hole. Spinning star withstands collapse Neutron stars are the ultra-dense remains of a star that has undergone a supernova explosion. They are the size of a small city but have up to two times the mass of our Sun. However, there is an upper limit on how massive neutron stars can become. If they are formed above a critical mass of more than two solar masses, they are expected to collapse immediately into a black hole.
    [Show full text]
  • Fast Radio Bursts
    UvA-DARE (Digital Academic Repository) Fast radio bursts Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. DOI 10.1007/s00159-019-0116-6 Publication date 2019 Document Version Final published version Published in Astronomy and Astrophysics Review License CC BY Link to publication Citation for published version (APA): Petroff, E., Hessels, J. W. T., & Lorimer, D. R. (2019). Fast radio bursts. Astronomy and Astrophysics Review, 27(1), [4]. https://doi.org/10.1007/s00159-019-0116-6 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 The Astronomy and Astrophysics Review (2019) 27:4 https://doi.org/10.1007/s00159-019-0116-6 REVIEW ARTICLE Fast radio bursts E. Petroff1,2 · J.
    [Show full text]
  • The Discovery of Frbs
    Credit: Swinburne Fast Radio Bursts : The Story SoStory Far... Bursts: The Fast Radio DuncanLorimer, Dept. Physics and of Astronomy, WestVirginia University Credit: Joeri van Leeuwen Phinney & Taylor (1979) Credit: Aurore Simonet “...the next few decades will undoubtedly bring about a greater understanding of radio-bursting objects, including Crab-like pulsars in other galaxies, counterparts to high-energy bursting sources, and other classes of objects that are yet to be discovered.” Rotating Radio Transients (RRATs) Credit: Froney Crawford Credit: ATNF Credit: Credit: Maura McLaughlin Credit: fas.org End up with a search over “DM” a search upwith End Single-pulse search pipeline DM Cordes & McLaughlin (2003) An unexpected signal! An unexpected signal! Interference Questions: * Why so bright? * Why no weaker events? * Detectable in other surveys? Even my own wife begins to doubt... “Moreover, the lack of highly dispersed celestial signals is the evidence that the Lorimer burst is unlikely to belong to a cosmological source population.” DM = 746 pc/cc 746 = DM ms W=8 eane et al. 2011/2012 Credit: K but then, in 2012, alongcame then,in2012, this but The burst is also consistent with the radio signal theorised … from an annihilatingfrom mini black hole.” “ … more good news followed in 2013 • Lorimer bursts? • Sparkers? • FARTS? • FRBs Cosmological redshift Cosmological redshift Credit: Thornton et al. (2013) DM delay in FRB 110220 FRB in delay DM Energy and redshift estimates Credit: Spitler et al. (2014) 2014: an FRB atArecibo an 2014: • Credit: Masui et al. (2015) 2015: an FRB atGBT an 2015: • Credit: Masui et al. (2015) 2015: an FRB atGBT an 2015: Scattering andScattering scintillation seen! • Credit: Petroff et al.
    [Show full text]