Fast Radio Bursts

Total Page:16

File Type:pdf, Size:1020Kb

Fast Radio Bursts UvA-DARE (Digital Academic Repository) Fast radio bursts Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. DOI 10.1007/s00159-019-0116-6 Publication date 2019 Document Version Final published version Published in Astronomy and Astrophysics Review License CC BY Link to publication Citation for published version (APA): Petroff, E., Hessels, J. W. T., & Lorimer, D. R. (2019). Fast radio bursts. Astronomy and Astrophysics Review, 27(1), [4]. https://doi.org/10.1007/s00159-019-0116-6 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 The Astronomy and Astrophysics Review (2019) 27:4 https://doi.org/10.1007/s00159-019-0116-6 REVIEW ARTICLE Fast radio bursts E. Petroff1,2 · J. W. T. Hessels1,2 · D. R. Lorimer3,4 Received: 30 November 2018 / Published online: 24 May 2019 © The Author(s) 2019 Abstract The discovery of radio pulsars over a half century ago was a seminal moment in astron- omy. It demonstrated the existence of neutron stars, gave a powerful observational tool to study them, and has allowed us to probe strong gravity, dense matter, and the inter- stellar medium. More recently, pulsar surveys have led to the serendipitous discovery of fast radio bursts (FRBs). While FRBs appear similar to the individual pulses from pulsars, their large dispersive delays suggest that they originate from far outside the Milky Way and hence are many orders-of-magnitude more luminous. While most FRBs appear to be one-off, perhaps cataclysmic events, two sources are now known to repeat and thus clearly have a longer lived central engine. Beyond understanding how they are created, there is also the prospect of using FRBs—as with pulsars—to probe the extremes of the Universe as well as the otherwise invisible intervening medium. Such studies will be aided by the high-implied all-sky event rate: there is a detectable FRB roughly once every minute occurring somewhere on the sky. The fact that less than a hundred FRB sources have been discovered in the last decade is largely due to the small fields-of-view of current radio telescopes. A new generation of wide-field instru- ments is now coming online, however, and these will be capable of detecting multiple FRBs per day. We are thus on the brink of further breakthroughs in the short-duration radio transient phase space, which will be critical for differentiating between the many proposed theories for the origin of FRBs. In this review, we give an observational and theoretical introduction at a level that is accessible to astronomers entering the field. Keywords Fast radio burst · Pulsar · Radio astronomy · Transient B E. Petroff [email protected] 1 Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 2 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands 3 Department of Physics and Astronomy, West Virginia University, PO Box 6315, Morgantown, WV, USA 4 Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV, USA 123 4 Page 2 of 75 E. Petroff et al. Contents 1 Introduction ............................................. 3 1.1 A brief history .......................................... 4 1.2 The FRB population ....................................... 7 1.3 Motivation for this review .................................... 9 2 Properties of FRBs .......................................... 9 2.1 Observed properties ....................................... 9 2.2 Basic derived properties ..................................... 12 2.2.1 Distance constraints ................................... 12 2.2.2 Source luminosity .................................... 13 2.2.3 DM–flux relationship ................................... 14 2.2.4 Brightness temperature .................................. 14 3 Propagation effects .......................................... 15 3.1 Dispersion ............................................ 16 3.2 Scintillation ........................................... 18 3.3 Scattering ............................................ 19 3.4 Faraday rotation ......................................... 20 3.5 Plasma lensing .......................................... 21 3.6 Hi absorption .......................................... 22 3.7 Free–free absorption ...................................... 23 4 Observational techniques ...................................... 23 4.1 Searching for FRBs ....................................... 23 4.1.1 Preliminary radio frequency interference excision .................... 24 4.1.2 Dedispersion ....................................... 25 4.1.3 Extracting a time series .................................. 26 4.1.4 Baseline estimation or smoothing ............................ 26 4.1.5 Normalization ....................................... 27 4.1.6 Matched filtering ..................................... 27 4.1.7 Candidate grouping .................................... 27 4.1.8 Post-processing RFI excision ............................... 27 4.2 FRB search pipelines ...................................... 28 4.3 FRB searches with radio telescopes ............................... 29 4.3.1 Single-dish methods ................................... 29 4.3.2 Interferometric methods ................................. 30 5 Landmark FRB discoveries ..................................... 31 5.1 FRB 010724: the Lorimer burst ................................. 31 5.2 FRB 010621: the Keane burst .................................. 32 5.3 FRB 140514 ........................................... 32 5.4 FRB 121102 ........................................... 33 5.5 FRB 180814.J0422+73 ..................................... 35 6 Population properties ........................................ 36 6.1 FRB polarization and rotation measures ............................ 37 6.2 Multi-wavelength follow-up of FRBs .............................. 39 6.3 Properties of the FRB population ................................ 40 6.4 The sky distribution ....................................... 40 6.5 The DM distribution ....................................... 42 6.6 The pulse width distribution ................................... 43 6.7 Repeating and non-repeating FRBs ............................... 44 6.8 Sub-population emerging? ................................... 45 7 The intrinsic population distribution ................................. 47 7.1 The fluence–dispersion measure plane ............................. 47 7.2 The FRB luminosity function .................................. 48 7.3 FRB rates and source counts .................................. 49 7.4 Intrinsic pulse widths ...................................... 51 7.5 Intrinsic spectra ......................................... 51 8 Emission mechanisms for FRBs ................................... 52 123 Fast radio bursts Page 3 of 75 4 9 Progenitor models .......................................... 55 9.1 Neutron star progenitors ..................................... 56 9.1.1 Isolated neutron star models ............................... 56 9.1.2 Interacting neutron star models .............................. 57 9.1.3 Colliding neutron star models .............................. 57 9.2 Black hole progenitors ..................................... 58 9.3 White dwarf progenitors .................................... 58 9.4 Exotic progenitors ........................................ 59 9.5 Differentiating between progenitor models ........................... 59 10 Summary and conclusions ...................................... 60 11 Predictions for 2024 ......................................... 61 11.1EP ................................................ 61 11.2JWTH .............................................. 61 11.3DRL ............................................... 62 Glossary ................................................. 63 References ................................................ 64 1 Introduction Astrophysical transients are events that appear and disappear on human-observable timescales, and are produced in a wide variety of physical processes. Longer duration transients, on timescales of hours to decades, such as fading supernovae, can emit incoherently from thermal electrons. Short-duration transients, however, with emission on timescales of seconds or less, are necessarily coherent in nature since the emission is too bright to be explained by individual electrons emitting separately. Whereas variable sources are characterized by occasional brightening and fading, often superimposed on a stable flux source, transients are often one-off events that fade when the emission mechanism turns off. The processes that produce both fast and slow transients
Recommended publications
  • Exploring Pulsars
    High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority.
    [Show full text]
  • Atmospheric Interpretation of Anomalous Terrestrial
    Atmospheric Interpretation of Anomalous Terrestrial Emission Serendipitously Discovered in Radioastronomy Data at 1 Gigahertz Sarah Burke-Spolaor1, Ron Ekers1, and Jean-Pierre Macquart 2 1 CSIRO Astronomy and Space Sciences, PO Box 76, Epping NSW 1710, Australia [email protected] 2 ICRAR/Curtin Institute of Radio Astronomy, GPO Box U1987, Perth WA 6845, Australia Abstract A publication in the Astrophysical Journal [1] reported the discovery of swept-frequency, terrestrial emission in a search for astrophysical pulses. The emission's origin has yet to be determined; its attributes are atypical of known sources of terrestrial signals. We review the observed properties of the emission and present a simple model for a physical mechanism that could occur in the atmosphere to produce it. If this mechanism is the cause of the emission, its origin may lie in secondary effects of lightning production in the upper atmosphere. 1 Introduction Searches for isolated astronomical radio pulses have grown in popularity following a number of recent discoveries [e.g. 2-3]. The surfeit of Earth-origin (man-made and natural) pulses requires these searches to use techniques that discriminate target signals from terrestrial pulses. A basic feature of astronomical pulses is their frequency-dependent delay, which follows δt / f −2. This is an additive dispersion effect resulting from propagation through interstellar plasma that is negligible in locally-generated emission (see Fig. 1). Recently, sixteen terrestrial pulses with frequency-swept characteristics that mimic an astronomical dis- persion delay were reported [1]. They were found in data taken at sparse intervals over the years 1998{2003, using the multibeam receiver on Parkes Radio Telescope in Australia and a specialized back-end hardware that allows 96 spectral bands to be sampled across a 288 MHz bandwidth centered at f = 1:375 GHz.
    [Show full text]
  • Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Xxneutron-Star Binaries: X-Ray Bursters
    Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 XXNeutron-Star Binaries: X-ray bursters [Look at the slides and the pictures in your book, but I won’t test you on this in detail, and we may skip altogether in class.] 22.4 Gamma-Ray Bursts 22.5 Black Holes 22.6 XXEinstein’s Theories of Relativity Special Relativity 22.7 Space Travel Near Black Holes 22.8 Observational Evidence for Black Holes Tests of General Relativity Gravity Waves: A New Window on the Universe Neutron Stars and Pulsars (sec. 22.1, 2 in textbook) 22.1 Neutron Stars According to models for stellar explosions: After a carbon detonation supernova (white dwarf in binary), little or nothing remains of the original star. After a core collapse supernova, part of the core may survive. It is very dense—as dense as an atomic nucleus—and is called a neutron star. [Recall that during core collapse the iron core (ashes of previous fusion reactions) is disintegrated into protons and neutrons, the protons combine with the surrounding electrons to make more neutrons, so the core becomes pure neutron matter. Because of this, core collapse can be halted if the core’s mass is between 1.4 (the Chandrasekhar limit) and about 3-4 solar masses, by neutron degeneracy.] What do you get if the core mass is less than 1.4 solar masses? Greater than 3-4 solar masses? 22.1 Neutron Stars Neutron stars, although they have 1–3 solar masses, are so dense that they are very small.
    [Show full text]
  • Constraining the Neutron Star Equation of State with Astrophysical Observables
    CONSTRAINING THE NEUTRON STAR EQUATION OF STATE WITH ASTROPHYSICAL OBSERVABLES by Carolyn A. Raithel Copyright © Carolyn A. Raithel 2020 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ASTRONOMY AND ASTROPHYSICS In the Graduate College THE UNIVERSITY OF ARIZONA 2020 3 ACKNOWLEDGEMENTS Looking back over the last five years, this dissertation would not have been possible with the support of many people. First and foremost, I would like to thank my advisor, Feryal Ozel,¨ from whom I have learned so much { about not only the science I want to do, but about the type of scientist I want to be. I am grateful as well for the support and mentorship of Dimitrios Psaltis and Vasileios Paschalidis { I have so enjoyed working with and learning from you both. To Joel Weisberg, my undergraduate research advisor who first got me started on this journey and who has continued to support me throughout, thank you. I believe a scientist is shaped by the mentors she has early in her career, and I am grateful to have had so many excellent ones. I am deeply thankful for my friends, near and far, who have supported me, encouraged me, and helped preserve my sanity over the last five years. To our astronomy crafting group Lia, Ekta, Samantha, and Allie; to my office mates David, Gabrielle, Tyler, Kaushik, and Michi; to Sarah, Marina, Tanner, Charlie, and Lina{ thank you. I will be forever grateful to my family for their continual support { espe- cially my parents, Don and Kathy, who instilled in me a love for learning from a very young age and who have encouraged me ever since.
    [Show full text]
  • A Short Walk Through the Physics of Neutron Stars
    A short walk through the physics of neutron stars Isaac Vidaña, INFN Catania ASTRA: Advanced and open problems in low-energy nuclear and hadronic STRAngeness physics October 23rd-27th 2017, Trento (Italy) This short talk is just a brush-stroke on the physics of neutron stars. Three excellent monographs on this topic for interested readers are: Neutron stars are different things for different people ² For astronomers are very little stars “visible” as radio pulsars or sources of X- and γ-rays. ² For particle physicists are neutrino sources (when they born) and probably the only places in the Universe where deconfined quark matter may be abundant. ² For cosmologists are “almost” black holes. ² For nuclear physicists & the participants of this workshop are the biggest neutron-rich (hyper)nuclei of the Universe (A ~ 1056-1057, R ~ 10 km, M ~ 1-2 M ). ¤ But everybody agrees that … Neutron stars are a type of stellar compact remnant that can result from the gravitational collapse of a massive star (8 M¤< M < 25 M¤) during a Type II, Ib or Ic supernova event. 50 years of the discovery of the first radio pulsar ² radio pulsar at 81.5 MHz ² pulse period P=1.337 s Most NS are observed as pulsars. In 1967 Jocelyn Bell & Anthony Hewish discover the first radio pulsar, soon identified as a rotating neutron star (1974 Nobel Prize for Hewish but not for Jocelyn) Nowadays more than 2000 pulsars are known (~ 1900 Radio PSRs (141 in binary systems), ~ 40 X-ray PSRs & ~ 60 γ-ray PSRs) Observables § Period (P, dP/dt) § Masses § Luminosity § Temperature http://www.phys.ncku.edu.tw/~astrolab/mirrors/apod_e/ap090709.html
    [Show full text]
  • Fast Radio Bursts: from a Handful to Hundreds with Chime/Frb
    FAST RADIO BURSTS: FROM A HANDFUL TO HUNDREDS WITH CHIME/FRB KIYOSHI MASUI, ALEX JOSEPHY, AND MOHIT BHARDWAJ FOR THE CHIME/FRB COLLABORATION AAS PRESS BRIEFING JUNE 9, 2021 Correspondance to: [email protected] (857) 207-6121 FAST RADIO BURSTS Bright, brief (millisecond) flashes of radio light coming from other galaxies Likely neutron star/magnetar origin but otherwise poorly understood, limited by small numbers Distortion of signals (dispersion) carries record of structure travelled through CHIME/FRB COLLABORATION ARTWORK: ESA CANADIAN HYDROGEN INTENSITY MAPPING EXPERIMENT FAST RADIO BURST INSTRUMENT (CHIME/FRB) CHIME/FRB COLLABORATION chime-experiment.ca CHIME/FRB CATALOG MAP OF EVERY KNOWN FRB UP TO JULY 2018 CHIME/FRB COLLABORATION CHIME/FRB CATALOG MAP OF EVERY KNOWN FRB UP TO JULY 2019 CHIME/FRB COLLABORATION CATALOG CONTENTS 535 FRBs observed between July 2018 and July 2019 Includes 61 bursts from 18 repeating sources Properties of each burst: time, sky location, brightness, duration, dispersion, etc. See CHIME/FRB Collaboration 2021 CHIME/FRB COLLABORATION A NEW PHASE OF FRB SCIENCE First large sample of FRBs Enables precision studies of the FRB Population Opportunity to study large- scale structure of the Universe CHIME/FRB COLLABORATION POPULATION MODELLING Simulating fake bursts allows us to understand our observational biases Measure brightness distribution and rate: ~800 bright FRBs per day CHIME/FRB COLLABORATION SKY DISTRIBUTION Must consider sensitivity, telescope response, and galactic foreground. After correcting for these effects, we find strong evidence for uniform distribution. See: Josephy et al. 2021 CHIME/FRB COLLABORATION LARGE SCALE STRUCTURE Find FRBs to be correlated with galaxies, for a wide redshift range Ushering in new era of FRB cosmology See: Rafiei-Ravandi et al.
    [Show full text]
  • One Or Several Populations of Fast Radio Burst Sources?
    One or several populations of fast radio burst sources? M. Caleb1, L. G. Spitler2 & B. W. Stappers1 1Jodrell Bank Centre for Astrophysics, the University of Manchester, Manchester, UK. 2Max-Planck-Institut fu¨r Radioastronomie, Bonn, Germany. arXiv:1811.00360v1 [astro-ph.HE] 1 Nov 2018 1 To date, one repeating and many apparently non-repeating fast radio bursts have been de- tected. This dichotomy has driven discussions about whether fast radio bursts stem from a single population of sources or two or more different populations. Here we present the arguments for and against. The field of fast radio bursts (FRBs) has increasingly gained momentum over the last decade. Overall, the FRBs discovered to date show a remarkable diversity of observed properties (see ref 1, http://frbcat.org and Fig. 1). Intrinsic properties that tell us something about the source itself, such as polarization and burst profile shape, as well as extrinsic properties that tell us something about the source’s environment, such as the magnitude of Faraday rotation and multi-path propagation effects, do not yet present a coherent picture. Perhaps the most striking difference is between FRB 121102, the sole repeating FRB2, and the more than 60 FRBs that have so far not been seen to repeat. The observed dichotomy suggests that we should consider the existence of multiple source populations, but it does not yet require it. Most FRBs to date have been discovered with single-pixel telescopes with relatively large angular resolutions. As a result, the non-repeating FRBs have typically been localized to no bet- ter than a few to tens of arcminutes on the sky (Fig.
    [Show full text]
  • Origin and Binary Evolution of Millisecond Pulsars
    Origin and binary evolution of millisecond pulsars Francesca D’Antona and Marco Tailo Abstract We summarize the channels formation of neutron stars (NS) in single or binary evolution and the classic recycling scenario by which mass accretion by a donor companion accelerates old NS to millisecond pulsars (MSP). We consider the possible explanations and requirements for the high frequency of the MSP population in Globular Clusters. Basics of binary evolution are given, and the key concepts of systemic angular momentum losses are first discussed in the framework of the secular evolution of Cataclysmic Binaries. MSP binaries with compact companions represent end-points of previous evolution. In the class of systems characterized by short orbital period %orb and low companion mass we may instead be catching the recycling phase ‘in the act’. These systems are in fact either MSP, or low mass X–ray binaries (LMXB), some of which accreting X–ray MSP (AMXP), or even ‘transitional’ systems from the accreting to the radio MSP stage. The donor structure is affected by irradiation due to X–rays from the accreting NS, or by the high fraction of MSP rotational energy loss emitted in the W rays range of the energy spectrum. X– ray irradiation leads to cyclic LMXB stages, causing super–Eddington mass transfer rates during the first phases of the companion evolution, and, possibly coupled with the angular momentum carried away by the non–accreted matter, helps to explain ¤ the high positive %orb’s of some LMXB systems and account for the (apparently) different birthrates of LMXB and MSP. Irradiation by the MSP may be able to drive the donor to a stage in which either radio-ejection (in the redbacks) or mass loss due to the companion expansion, and ‘evaporation’ may govern the evolution to the black widow stage and to the final disruption of the companion.
    [Show full text]
  • Planck Stars: New Sources in Radio and Gamma Astronomy? Nature Astronomy 1 (2017) 0065
    Planck stars: new sources in radio and gamma astronomy? Nature Astronomy 1 (2017) 0065 Carlo Rovelli CPT, Aix-Marseille Universit´e,Universit´ede Toulon, CNRS, F-13288 Marseille, France. A new phenomenon, recently studied in theoretical ble according to classical general relativity, but there is physics, may have considerable interest for astronomers: theoretical consensus that they decay via quantum pro- the explosive decay of old primordial black holes via cesses. Until recently, the only decay channel studied was quantum tunnelling. Models predict radio and gamma Hawking evaporation [6], a perturbative phenomenon too bursts with a characteristic frequency-distance relation slow to have astrophysical interest: evaporation time of making them identifiable. Their detection would be of a stellar black hole is 1050 Hubble times. major theoretical importance. What can bring black hole decay within potential ob- The expected signal may include two components [1]: servable reach is a different, non-perturbative, quantum (i) strong impulsive emission in the high-energy gamma phenomenon: tunnelling, the same phenomenon that spectrum (∼ T eV ), and (ii) strong impulsive signals triggers nuclear decay in atoms. The explosion of a black in the radio, tantalisingly similar to the recently dis- hole out of its horizon is forbidden by the classical Ein- covered and \very perplexing" [2] Fast Radio Bursts. stein equations but classical equations are violated by Both the gamma and the radio components are expected quantum tunnelling. Violation in a finite spacetime re- to display a characteristic flattening of the cosmological gion turns out to be sufficient for a black hole to tun- wavelength-distance relation, which can make them iden- nel into a white hole and explode [7].
    [Show full text]
  • What Can Fast Radio Bursts Teach Us About Magnetars?
    What Can Fast Radio Bursts Teach Us About Magnetars? Fast radio bursts (FRBs) are mysterious pulses of radio emission that last only milliseconds, but put out as much energy as our sun produces over several days. Astrophysicists have many reasons to think they originate from magnetars, highly magnetized neutron stars. A magnetar may have a magnetic field of 10^14 Gauss, thousands of times stronger than a typical neutron star (just for comparison, the magnetic field of the sun is about 5 Gauss). What can we learn about magnetars from FRBs, considering the firehose of data expected in the next decade? As brief as FRB’s are, there are features in the radio emission that can be quasi-periodic and may be caused by oscillations of the crust and even core of the magnetar. We find some of these reported "trains" of FRBs are consistent with twisting “torsional” oscillations of magnetars seen in our galaxy. It is possible that FRBs offer opportunities to study the crust and internal structure of magnetars and could help constrain the distance of some of these objects. If our interpretation is correct, it represents a revolution in our ability to study magnetars. By combining observations from radio, gamma-rays and x-rays, we may be able to test our models of the interiors of some of the most dramatic objects in the universe, providing a laboratory of fundamental physics in extreme conditions. We expect a large amount of data from these objects in the next few years, but we’ll particularly require more detailed radio observations to further understand them.
    [Show full text]
  • Palatini-Born-Infeld Gravity and Bouncing Universe
    Windows on Quantum Gravity @Madrid, Spain 2015/10/30 Palatini-Born-Infeld Gravity and Bouncing Universe Taishi Katsuragawa (Nagoya Univ.) In collaboration with Meguru Komada (Nagoya Univ.), Shin’ichi Nojiri (Nagoya Univ. & KMI) Based on arXiv:1409.1663 Alternative Theories to General Relativity GR is simple but successful theory. Combining the SM based on QFT, our Universe is described well. Planck (2013) However, there are many reasons and motivations to consider alternative theories of gravity to GR. 1 Modification inspired by IR and UV Physics Low energy scale The observation implies the existence of Dark energy and Dark matter. 120 • Cosmological constant problem Λ푡ℎ푒표 ∼ 10 Λ표푏푠 • Origin of Cold Dark Matter etc. It may be possible to explain these two “dark” components in terms of modified gravity. High energy scale GR loses the predictability at the Planck scale where both GR and QFT are required simultaneously. • Singularity and evaporation of black holes ← Today’s topic • Initial singularity (Big Bang scenario) We can regard modified gravity as effective field theory of quantum gravity. 2 Table of contents 1. Introduction 2. Born-Infeld Gravity in Palatini Formalism 3. Bouncing Universe 4. Black Hole Formation 5. Summary and Discussion 3 Born-Infeld Gravity in Palatini Formalism 4 Born-Infeld Electrodynamics The Born-Infeld type theory was first proposed as a non-linear model of electromagnetics. In the Born-Infeld model, a new scale is introduced. 1. Gauge invariant 2. Lorentz invariant 3. To restore the Maxwell theory Born and Infeld (1934) where, 휆 is a parameter with dimension 푙푒푛푔푡ℎ 2. Because the action includes the square root, there appear the upper limit in the strength given by the scale, which may have suggested that there might not appear the divergence.
    [Show full text]
  • Fast Radio Burst and Non-Thermal Afterglow from Binary Neutron Star Mergers
    Fast Radio Burst and Non-thermal Afterglow from Binary Neutron Star Mergers 戸谷友則 (TOTANI, Tomonori) Dept. Astronomy, Univ. Tokyo Outline • Three recent papers by my students: • repeating and non-repeating FRBs from binary neutron star mergers • Yamasaki, TT, & Kiuchi ’18, PASJ, 70, 39 • A new, more natural modeling of electron energy distribution for the non- thermal afterglow of GW 170817 • Lin, TT, & Kiuchi ’18, arXiv:1810.02587 • IceCube neutrinos from cosmic-rays in star-forming galaxies: a latest calculation by cosmological galaxy formation model • Sudoh, TT, & Kawanaka ’18, PASJ, 70, 49 • repeating and non-repeating FRBs from binary neutron star mergers • Shotaro Yamasaki, TT, & Kiuchi ’18, PASJ, 70, 39 Fast Radio Bursts: A New Transient Population at Cosmological Distances ✦ intrinsic pulse width <~ 1 msec (observed width broadened by scattering) ✦ event rate ~ 103-4 /sky /day ✦ large dispersion measure implies z ~ 1 Thoronton What’s the origin of FRBs? ✦ FRB 121102 is a repeater! ✦ most likely a young neutron star ✦ only one FRB detected by Arecibo (the faintest flux) ✦ dwarf, star-forming host galaxy identified at z = 0.19 ✦ strong persistent radio flux detected (180 uJy, size < 0.7 pc) ✦ only one case of confirmed repeating FRB: a different population from others? ✦ some FRBs show low rotation measure (e.g., FRB 150807, Ravi+’16) ✦ highly magnetized environment like young supernova remnants or dense star forming regions not favored ✦ clean environment such as neutron-star merger? ✦ FRB 171020 does not have any persistent radio counterpart similar to FRB 121102 (Mahony+’18) (non-repeating) FRBs from NS-NS mergers TT 2013, PASJ, 65, L12 ✦ FRB rate vs.
    [Show full text]