I ASSESSING the ROLE of BIOLOGICAL CONTROL AGENTS of CUTWORMS (LEPIDOPTERA: NOCTUIDAE) in FIELD CROPS in the CANADIAN PRAIRIES B

Total Page:16

File Type:pdf, Size:1020Kb

I ASSESSING the ROLE of BIOLOGICAL CONTROL AGENTS of CUTWORMS (LEPIDOPTERA: NOCTUIDAE) in FIELD CROPS in the CANADIAN PRAIRIES B ASSESSING THE ROLE OF BIOLOGICAL CONTROL AGENTS OF CUTWORMS (LEPIDOPTERA: NOCTUIDAE) IN FIELD CROPS IN THE CANADIAN PRAIRIES By UDARI MADUSHANI WANIGASEKARA A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Entomology University of Manitoba Winnipeg, Manitoba Canada Copyright ©2020 by R.W.M. UDARI MADUSHANI WANIGASEKARA i ABSTRACT Cutworms can cause serious damage to crops in the Prairies Ecozone of southern Manitoba, Saskatchewan, and Alberta. By far, the best-known biocontrol agents of pest cutworms are parasitoids. However, the community of parasitoids is poorly known, and parasitoids remain as an unutilized resource for controlling cutworms. Thus, this study is designed to identify the economically important cutworms, to characterize the taxonomy and biology of the parasitoid community attacking those cutworm species in relationships to cutworm biology, and to identify and characterize potential plant resources that can enhance pest control services of parasitoids in the Prairies. Cutworms, including redbacked, darksided, dingy, and army cutworms were collected from infested fields and reared in the laboratory conditions during 2012-2016. Hymenopteran parasitoids emerged from cutworms were 64% Encyrtidae, 23% Ichneumonidae, and 13% Braconidae. The percent parasitized by each species was below 10% throughout the study period. Copidosoma bakeri and Copidosoma cuproviridis were the two Encyrtidae species recorded according to their original descriptions, but data obtained from their morphology, morphometry, genetic, collection locality, and host data support did not provide support for two species and new revision for this genus is needed. C. bakeri was the most common parasitoid recorded in the Prairies, and 89.1 % of hymenopteran parasitoids recorded from Manitoba were C. bakeri. Thus, C. bakeri was the only species capable of controlling cutworms in Manitoba. In contrast, both Cotesia spp. and C. bakeri were parasitizing cutworm communities in Alberta. All other hymenopteran parasitoids were recorded in small numbers or recorded only once during the study period. Finally, I assessed potential cover crops that could provide resources to parasitoids with respect to buckwheat, camelina, canola, chickling vetch, field pennycress, flax, oriental mustard, phacelia, and tillage radish and found camelina is the best candidate for cover ii cropping. This study is the critical first step in developing sustainable management practices for cutworms in canola and will develop the framework for future research on parasitoids and habitat management to develop effective biocontrol strategies. iii ACKNOWLEDGEMENTS I am grateful to my supervisor, Dr. Barb Sharanowski, for taking up the responsibility of supervising and mentoring me during my pursuit of a Ph.D. degree. Her strong support and continuous encouragement motivated me throughout my study leading to the successful completion of my Ph. D. project. I was blessed to have an advisor like you in my life. Secondly, I extend my sincere appreciation to my dissertation Supervisory Committee Members, Dr. Rob Currie, Dr. Alejandro C. Costamagna, and Dr. Yvonne Lawley for providing their invaluable guidance, support, and suggestions on my dissertation project. My appreciation goes to the Canola Agronomic Research Program (CARP) and the Manitoba Agriculture, Food and Rural Development (MAFRD) Agri-Food Research and Development Initiative (ARDI) for providing funding for this project. I would like to acknowledge Dr. John Gavloski, Manitoba Agriculture, Food and Rural Initiatives for providing information on cutworm infested fields in Manitoba, and we thank Dr. Kevin Floate, Jenifer Otani, Jeremy Hummel for collecting, rearing and providing us specimens. Also, I am deeply grateful to Dr. Jose Fernandez-Triana, Dr. Andrew Bennett and Dr. Gary Gibson (Canadian National Collection, Ottawa, Canada) for species identification. I would also like to thank Whitney Lodge-Zaparnick, Amber Bass, Melanie Scallion, Chalsie Warren, Pablo Krüger Fernandes Regan Bell, Iris Vaisman, Eric Wallace at the University of Manitoba for assistance with fieldwork and insect rearing, Also I would like to extend my thanks to Miles Zhang, Ryan D. Ridenbaugh and Leanne Peixoto at the University of Florida for providing me with the technical support for the molecular and morphometrics work. Also, I would like to thank technicians, Mr. David Holder, Mr. Phil Snarr, Mr. Derek Eyer for iv their assistance in both lab and field experiments. I wish to thank Mr. Jordan Bannerman for invaluable assistance provided to me in data analyses. This work could not have been done without the support of farmers in Manitoba, Alberta, and Saskatchewan, and I would like to extend our gratitude to farmers for granting permission for us to collect samples from their fields. I wish to thank all the members of the support and administration staff of the Department of Entomology, the University of Manitoba for their kindness and support during my studies. I would like to express my gratitude to the Government of Manitoba, Faculty of Agriculture and Food Sciences, Faculty of Graduate Studies, Entomological Society of America, Entomological Society of Canada, and Entomological Society of Manitoba for the financial support offered throughout my project. Special thanks to my past and present lab mates for their company, especially my dear friends, Miles Zhang, Amber Bass, and Melanie Scallion. A friendly chat with you was priceless for me in difficult situations. I also thank fellow students who were not part of the Sharanowski Lab, but who have provided friendship and support, and with whom I have shared laughter, frustration and companionship. I particularly extend my gratitude towards the Tharshinidevy Nagalingam family for accommodating me in their home when I first came to Canada and for their kind support and encouragement during my study. Finally, I acknowledge the people who mean a lot to me, my parents and in-laws for showing faith in me and giving me the liberty to choose what I desired. I salute you all for the selfless love, care, pain and sacrifices you made to shape my life. And most of all, I owe my deepest gratitude to my husband, Lahiru Ishan, for his affection, encouragement, understanding v and patience. He supported me without any complaint or regret that enabled me to complete my Ph.D. This acknowledgement would be incomplete without thanking my little one, Nethula Methsithu, whose smiling face always made me happy and inspired me. Having him midway during my Ph.D. was certainly not easy for me but he has made my life wonderful. vi DEDICATION To Lahiru Ishan, my amazing husband, whose sacrificial care for me and our little one made it possible for me to complete this work, and to my parents and teachers, who have taught me the importance of cultivating compassion and universal loving-kindness for lifetime happiness and success vii TABLE OF CONTENTS ABSTRACT ............................................................................................................................... ii ACKNOWLEDGEMENTS .................................................................................................... iv DEDICATION ......................................................................................................................... vii TABLE OF CONTENTS ...................................................................................................... viii LIST OF TABLES .................................................................................................................. xii LIST OF FIGURES ............................................................................................................... xiv LIST OF APPENDICES ..................................................................................................... xviii THE PUBLICATION STATUS OF EACH CHAPTER OF THE THESIS, AND THE ROLE OF EACH COAUTHOR IN RELEVANT CHAPTERS ....................................... xix LIST OF COPYRIGHTED MATERIALS ......................................................................... xxi Chapter 1 ....................................................................................................................................... 1 INTRODUCTION ..................................................................................................................... 1 1.1 Cutworm biology, damage, and control ............................................................................ 1 1.2 Hymenopteran parasitoids, potential biological control agents of cutworm .................... 4 1.3 Habitat management for conservation biological control ................................................. 5 1.4 Objectives ......................................................................................................................... 6 1.5 Thesis organization ........................................................................................................... 7 Chapter 2 ..................................................................................................................................... 12 Cover crops as a tool for insect pest management with a focus on oilseed brassicas ....... 12 2.1 Introduction ..................................................................................................................... 13 2.2 Cover crops for conservation biocontrol of arthropod pests
Recommended publications
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • An Annotated Bibliography of the Dingy Cutworm Complex
    RESEARCH CIRCULAR 202 SEPTEMBER 197 5 An Annotated Bibliography of the Dingy Cutworm Complex Feltia ducens Walker and Feltia subgothica Haworth FRED J. ARNOLD OHIO AGRICULTURAL RESE CONTENTS * * * * Introduction ................................................................... 1 Bibliography ................................................................... 4 Index . 22 Dingy Cutworm Larva Dingy Cutworm Adult AN ANNOTATED BIBLIOGRAPHY OF THE DINGY CUTWORM COMPLEX, Feltia ducens Walker and Feltia subgothica (Haworth) Roy W. Rings 1 , Beth A. Baughman 2 , and Fred J. Arnold 2 Introduction The purpose of this circular is to consolidate the abstracted literature on the dingy cutworm complex, Feltia ducens Walker and Feltia subgothica (Haworth). The term "dingy cutworm complex" is used since there is much con­ fusion and disagreement between both earlier and contemporary taxonomists as to the correct usage of the scientific name of the economically important dingy cutworm. Contemporary taxonomists agree that Feltia ducens and Feltia subgothica have been considered distinct species for more than 70 years. In the past there has been debate as to whether the latter species should be called sub­ gothica or jaculifera. In this publication, the authors are following the nomenclatural policy of the United States National Museum which is based upon Forbes' interpretation of the complex. The photographs on the contents page illustrate the species which the authors consider the dingy cutworm, Feltia ducens Walker. Forbes (1954) believed that Haworth (1810) probably had ducens and subgothica mixed up. He implied that it is not certain which species Haworth described as subgothica and therefore Forbes called it jaculifera. Several other authors (Hampson 1903; McDunnough 1938; Smith 1893) believed that Haworth had only a single specimen.
    [Show full text]
  • Examining Population Structure of a Bertha Armyworm, Mamestra
    RESEARCH ARTICLE Examining population structure of a bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), outbreak in western North America: Implications for gene flow and dispersal 1☯³ 1☯³ 1 1 Martin A. ErlandsonID *, Boyd A. MoriID , Cathy CoutuID , Jennifer HolowachukID , 1 2 1 a1111111111 Owen O. Olfert , Tara D. Gariepy , Dwayne D. HegedusID * a1111111111 a1111111111 1 Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA, 2 London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON CANADA a1111111111 a1111111111 ☯ These authors contributed equally to this work. ³ These authors are co-first authors on this work. * [email protected] (MAE); [email protected] (DDH) OPEN ACCESS Abstract Citation: Erlandson MA, Mori BA, Coutu C, Holowachuk J, Olfert OO, Gariepy TD, et al. (2019) The bertha armyworm (BAW), Mamestra configurata, is a significant pest of canola (Bras- Examining population structure of a sica napus L. and B. rapa L.) in western North America that undergoes cyclical outbreaks bertha armyworm, Mamestra configurata every 6±8 years. During peak outbreaks millions of dollars are spent on insecticidal control (Lepidoptera: Noctuidae), outbreak in western North America: Implications for gene flow and and, even with control efforts, subsequent damage can result in losses worth millions of dol- dispersal. PLoS ONE 14(6): e0218993. https://doi. lars. Despite the importance of this pest insect, information is lacking on the dispersal ability org/10.1371/journal.pone.0218993 of BAW and the genetic variation of populations from across its geographic range which Editor: Tzen-Yuh Chiang, National Cheng Kung may underlie potential differences in their susceptibility to insecticides or pathogens.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Tobacco Cutworms
    TECHNICAL BULLETIN NO. 88 MAY, 1929 TOBACCO CUTWORMS BY S. E. CRUMB Entomologist, Division of Truck-Crop Insects Bureau of Entomology LIBRARY! RECEIVED \ • AUG3 0 1929 •! UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. 0. S. «OVEllliMElIT PI(IMT1N6 OFPlCBt Itt» TECHNICAL BULLETIN NO. 88 MAY, 1929 UNITED STATES DEPARTMENT OF AGRICULTURE • WASHINGTON, D. C TOBACCO CUTWORMS By S'. E. CRUMB Entomologist, Division of Truck-Crop Insects, Bureau of Entomology ^ CONTENTS Page Page -General consideration of tobacco cut- Consideration of the species 52 worms 1 The Feltia group __. 52 Distribution 3 The Euxoa group 86 Coloration of larvae 6 Genus Polia 115 Anatomy of larvae 7 The C-nigrum group 132 Outline for description of a cut- Genus Prodenia 142 worm 26 Remedial control of cutworms 156 Key to the cutworms which at- Poisons applied to plants 156 tack tobacco 26 Poisoned baits 158 Eggs and first-instar larvae 29 Other control methods 171 Pupae of tobacco cutworms 31 Literature cited 176 Breeding methods 33 Seasonal history 37 Natural control of cutworms 38 GENERAL CONSIDERATION OF TOBACCO CUTWORMS Tobacco is one of those crops, grown in plant beds and trans- planted to the open field, which are especially vulnerable to cut- worm attack.» Agricultural practice has accentuated its liability to injury by supplying conditions in the preceding crop (clover, grass, or weeds) which favor the multiplication of cutworms. With some types of tobacco it is desirable that all of the plants in a field ripen at about the same time. In such cases cutworm damage at trans- plajiting time may be unusually important.
    [Show full text]
  • MAMESTRA CONFIGURATA NUCLEOPOLYHEDROVIRUS (Maconpv): POTENTIAL CHITIN-BINDING PROTEINS and THEIR ROLE in ORAL INFECTIVITY
    MAMESTRA CONFIGURATA NUCLEOPOLYHEDROVIRUS (MacoNPV): POTENTIAL CHITIN-BINDING PROTEINS AND THEIR ROLE IN ORAL INFECTIVITY A thesis submitted to the College of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology University of Saskatchewan Saskatoon By Amy Lynn Noakes © Copyright Amy Lynn Noakes, December 2012. All rights reserved. 1 PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. DISCLAIMER Reference in this thesis/dissertation to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favouring by the University of Saskatchewan. The views and opinions of the author expressed herein do not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement purposes.
    [Show full text]
  • An Annotated List of the Lepidoptera of Alberta, Canada
    A peer-reviewed open-access journal ZooKeys 38: 1–549 (2010) Annotated list of the Lepidoptera of Alberta, Canada 1 doi: 10.3897/zookeys.38.383 MONOGRAPH www.pensoftonline.net/zookeys Launched to accelerate biodiversity research An annotated list of the Lepidoptera of Alberta, Canada Gregory R. Pohl1, Gary G. Anweiler2, B. Christian Schmidt3, Norbert G. Kondla4 1 Editor-in-chief, co-author of introduction, and author of micromoths portions. Natural Resources Canada, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada T6H 3S5 2 Co-author of macromoths portions. University of Alberta, E.H. Strickland Entomological Museum, Department of Biological Sciences, Edmonton, Alberta, Canada T6G 2E3 3 Co-author of introduction and macromoths portions. Canadian Food Inspection Agency, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, Canada K1A 0C6 4 Author of butterfl ies portions. 242-6220 – 17 Ave. SE, Calgary, Alberta, Canada T2A 0W6 Corresponding authors: Gregory R. Pohl ([email protected]), Gary G. Anweiler ([email protected]), B. Christian Schmidt ([email protected]), Norbert G. Kondla ([email protected]) Academic editor: Donald Lafontaine | Received 11 January 2010 | Accepted 7 February 2010 | Published 5 March 2010 Citation: Pohl GR, Anweiler GG, Schmidt BC, Kondla NG (2010) An annotated list of the Lepidoptera of Alberta, Canada. ZooKeys 38: 1–549. doi: 10.3897/zookeys.38.383 Abstract Th is checklist documents the 2367 Lepidoptera species reported to occur in the province of Alberta, Can- ada, based on examination of the major public insect collections in Alberta and the Canadian National Collection of Insects, Arachnids and Nematodes.
    [Show full text]
  • RECOGNIZING ECONOMICALLY IMPORTANT CATERPILLAR PESTS of PACIFIC NORTHWEST ROW CROPS Prepared by A.L
    EB1892 RECOGNIZING ECONOMICALLY IMPORTANT CATERPILLAR PESTS OF PACIFIC NORTHWEST ROW CROPS Prepared by A.L. Antonelli, Ph.D., Washington State University Cooperative Extension entomologist, WSU Puyallup; P.J. Landolt, Ph.D., USDA, Wapato; D.F. Mayer, Ph.D., WSU research entomologist, WSU Prosser; and AH.W. Homan, University of Idaho entomologist (retired) Use pesticides with care. Apply them only to plants, animals, or sites listed on the label. When mixing and applying pesticides, follow all label precautions to protect yourself and others around you. It is a violation of the law to disregard label directions. If pesticides are spilled on skin or clothing, remove clothing and wash skin thoroughly. Store pesticides in their original containers and keep them out of the reach of children, pets, and livestock. Copyright 2000 Washington State University EB1892 RECOGNIZING ECONOMICALLY IMPORTANT CATERPILLAR PESTS OF pacific northwest ROW CROPS Most economically important “worms” or caterpillars in the Pacific Northwest belong to the family Noctuidae, comprising the cutworms, armyworms, and loopers. The moth adults of this family collectively are known as “millers.” Although in this bulletin we deal primarily with the noctuid group, we describe two other species, the imported cabbageworm and the diamondback moth. They also are noted pests of the Northwest’s important cole crops. Because it is often more efficient to monitor for adults than for larvae, we include descriptions and photos of adults in this guide. Larvae photos are as true to type as we could find to reinforce the text. Word descriptions follow the style and format previously given by Johansen, 1973 (Fig 1) and can be used only with mature larvae.
    [Show full text]
  • Winter Cutworm: a New Pest Threat in Oregon J
    OREGON STATE UNIVERSITY EXTENSION SERVICE Winter Cutworm: A New Pest Threat in Oregon J. Green, A. Dreves, B. McDonald, and E. Peachey Introduction Winter cutworm is the common name for the larval stage of the large yellow underwing moth (Noctua pronuba [Lepidoptera: Noctuidae]). The cutworm has tolerance for cold temperatures, and larval feeding activity persists throughout fall and winter. Adult N. pronuba moths have been detected in Oregon for at least a decade, and the species is common in many different ecological habitats. Epidemic outbreaks of adult moths have occurred periodically in this region, resulting in captures of up to 500 moths per night. However, larval feeding by N. pronuba has not been a problem in Oregon until recently. In 2013 and 2014, there were isolated instances reported, including damage by larvae to sod near Portland and defoliation of herb and flower gardens in Corvallis. In 2015, large numbers of larvae were observed around homes, within golf courses, and in field crops located in Oregon and Washington. Winter cutworms have a wide host range across agricultural, urban, and natural landscapes (Table Photo: Nate McGhee, © Oregon State University. 1, page 2) and are a concern as a potential crop pest that can cause considerable damage in a short highlights general information about winter amount of time. Above-ground damage occurs when cutworm, including identification, scouting recom- larvae chew through tissues near ground level, cut- mendations, and potential control measures. ting the stems off plants. Leaf chewing and root feeding also have been observed. Winter cutworms Jessica Green, faculty research assistant, Department of are gregarious, which means they feed and move in Horticulture; Amy J.
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]