Gene Flow and Genetic Variation Explain Signatures of Selection Across a Climate Gradient in Two Riparian Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microevolution and the Genetics of Populations Microevolution Refers to Varieties Within a Given Type
Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift. -
Gene Flow by Pollen Into Small Populations
Proc. Natl. Acad. Sci. USA Vol. 86, pp. 9044-9047, November 1989 Population Biology Gene flow by pollen into small populations: Data from experimental and natural stands of wild radish (Raphanus sativus/spatial isolation/interpopulation mating) NORMAN C. ELLSTRANDt, B. DEVLINt, AND DIANE L. MARSHALL§ Department of Botany and Plant Sciences and Program in Genetics, University of California, Riverside, CA 92521-0124 Communicated by R. W. Allard, August 14, 1989 (received for review August 18, 1988) ABSTRACT Gene flow can have an especially strong im- much from population to population, whether it varies within pact on the evolution of small populations. However, empirical a population over a season, and whether it varies with spatial studies on the actual rates and patterns of gene flow into small isolation from the nearest conspecific. More data are needed populations are few. Thus, we sought to measure gene flow into that focus more closely on a number ofpopulations ofa single small populations of wild radish, Raphanus sativus. We found species. significant differences in gene flow receipt among experimental Therefore, we selected wild radish, Raphanus sativus L. populations and within those populations over a season. A (Brassicaceae), to measure patterns of gene flow by pollen maximum-likelihood estimate revealed that almost all of the into small populations. This species is especially suitable for gene flow into these synthetic populations had its origin in both experimental and descriptive gene flow studies because relatively distant (>650 m), large natural populations rather it is a common outcrossing weed in southern California (8), than the proximal (255400 m), small synthetic populations. -
Saving Our Tree HUMAN GENETICS
HIGHLIGHTS EVOLUTION IN BRIEF Saving our tree HUMAN GENETICS Identification of a gene responsible for familial For several years, evolutionary biolo- Wolff–Parkinson–White syndrome. gists interested in gene flow between species have been investigating and Gollob, M. H. et al. N. Engl. J. Med. 344, 1823–1831 (2001) debating a controversial issue: the hor- Wolff–Parkinson–White (WPW) syndrome is an inherited heart izontal exchange of genes between dis- defect associated with arrhythmia, cardiac arrest and sudden death. tantly related species, its extent and Gollob et al. studied two large families with autosomal-dominant possible adaptive significance. WPW syndrome, and used a positional candidate-gene approach to Horizontal gene transfer (HGT) is an identify the causative gene, which encodes a regulatory subunit of important evolutionary force in appears in a cluster of bacterial AMP-activated protein kinase. This finding should shed light on prokaryotes, as their life cycles facilitate sequences, then the vertebrate gene the mechanisms that lead to heart arrhythmias. the exchange of genes between even was probably horizontally transferred distantly related species. However, this from bacteria. Conversely, if all GENETIC NETWORKS is trickier in multicellular organisms, eukaryotic sequences cluster together, in which the fixation of horizontally then HGT has probably not occurred Ordering genes in a flagella pathway by analysis of transferred genes can only occur if as this grouping is most parsimo- expression kinetics from living bacteria. they are transmitted through the germ niously explained by vertebrates hav- Kalir, S. et al. Science 292, 2080–2083 (2001) line. It was therefore surprising when ing acquired the sequence by descent the International Human Genome through other eukaryotes. -
Gene Flow 1 6 James Mallet
Gene Flow 1 6 James Mallet Calton Laboratory, Department of Biology, Univetsity College London, 4 Stephenson Way, London NWI 2HE, UK What is Gene Flow? 'Gene flow' means the movement of genes. In some cases, small fragments of DNA may pass from one individual directly into the germline of another, perhaps transduced by a pathogenic virus or other vector, or deliberately via a human transgenic manipulation. However, this kind of gene flow, known as horizontal gene transfer, is rare. Most of the time, gene flow is caused by the movement or dispersal of whole organisms or genomes from one popula- tion to another. After entering a new population, immigrant genomes may become incorporated due to sexual reproduction or hybridization, and will be gradually broken up by recombination. 'Genotype flow' would therefore be a more logical term to indicate that the whole genome is moving at one time. The term 'gene flow' is used probably because of an implicit belief in abundant recombination, and because most theory is still based on simple single locus models: it does not mean that genes are transferred one at a time. The fact that gene flow is usually caused by genotype flow has important consequences for its measurement, as we shall see. Two Meanings of 'Gene Flow' We are often taught that 'dispersal does not necessarily lead to gene flow'. The term 'gene flow' is then being used in the sense of a final state of the population, i.e. successful establishment of moved genes. This disagrees somewhat with a more straightforward interpretation of gene flow as actual EICAR International 2001. -
Biological Invasions at the Gene Level VIEWPOINT Rémy J
Diversity and Distributions, (Diversity Distrib.) (2004) 10, 159–165 Blackwell Publishing, Ltd. BIODIVERSITY Biological invasions at the gene level VIEWPOINT Rémy J. Petit UMR Biodiversité, Gènes et Ecosystèmes, 69 ABSTRACT Route d’Arcachon, 33612 Cestas Cedex, France Despite several recent contributions of population and evolutionary biology to the rapidly developing field of invasion biology, integration is far from perfect. I argue here that invasion and native status are sometimes best discussed at the level of the gene rather than at the level of the species. This, and the need to consider both natural (e.g. postglacial) and human-induced invasions, suggests that a more integrative view of invasion biology is required. Correspondence: Rémy J. Petit, UMR Key words Biodiversité, Gènes et Ecosystèmes, 69 Route d’Arcachon, 33612 Cestas Cedex, France. Alien, genetic assimilation, gene flow, homogenization, hybridization, introgression, E-mail: [email protected] invasibility, invasiveness, native, Quercus, Spartina. the particular genetic system of plants. Although great attention INTRODUCTION has been paid to the formation of new hybrid taxa, introgression Biological invasions are among the most important driving more often results in hybrid swarms or in ‘genetic pollution’, forces of evolution on our human-dominated planet. According which is best examined at the gene level. Under this perspective, to Myers & Knoll (2001), distinctive features of evolution now translocations of individuals and even movement of alleles include a homogenization of biotas, a proliferation of opportunistic within a species’ range (e.g. following selective sweeps) should species, a decline of biodisparity (the manifest morphological equally be recognized as an important (if often cryptic) and physiological variety of biotas), and increased rates of speci- component of biological invasions. -
Divergence, Gene Flow, and Speciation in Eight Lineages of Trans‐Beringian Birds
Received: 2 May 2019 | Revised: 22 July 2020 | Accepted: 27 July 2020 DOI: 10.1111/mec.15574 ORIGINAL ARTICLE Divergence, gene flow, and speciation in eight lineages of trans-Beringian birds Jessica F. McLaughlin1,2 | Brant C. Faircloth3 | Travis C. Glenn4 | Kevin Winker1 1University of Alaska Museum, Fairbanks, AK, USA Abstract 2Sam Noble Oklahoma Museum of Natural Determining how genetic diversity is structured between populations that span the History, Norman, OK, USA divergence continuum from populations to biological species is key to understanding 3Department of Biological Sciences and Museum of Natural Science, Louisiana State the generation and maintenance of biodiversity. We investigated genetic divergence University, Baton Rouge, LA, USA and gene flow in eight lineages of birds with a trans-Beringian distribution, where 4 Department of Environmental Health Asian and North American populations have likely been split and reunited through Science and Institute of Bioinformatics, University of Georgia, Athens, GA, USA multiple Pleistocene glacial cycles. Our study transects the speciation process, in- cluding eight pairwise comparisons in three orders (ducks, shorebirds and passer- Correspondence Kevin Winker, University of Alaska Museum, ines) at population, subspecies and species levels. Using ultraconserved elements 907 Yukon Drive, Fairbanks, AK 99775, USA. (UCEs), we found that these lineages represent conditions from slightly differentiated Email: [email protected] populations to full biological species. Although allopatric speciation is considered Funding information the predominant mode of divergence in birds, all of our best divergence models in- National Science Foundation, Grant/Award Number: DEB-1242267-1242241-1242260 cluded gene flow, supporting speciation with gene flow as the predominant mode in Beringia. -
Western Australian Wildlife Management Program No
WESTERN AUSTRALIAN WILDLIFE MANAGEMENT PROGRAM NO. 33 Declared Rare and Poorly Known Flora in the Central Forest Region by Kim Williams Andrew Horan Scott Wood Andrew Webb 2001 Department of Conservation and Land Management Locked Bag 104, Bentley Delivery Centre WA 6983 1 Department of Conservation and Land Management Locked Bag 104, Bentley Delivery Centre WA 6983 This study was partly funded by the Endangered Species Program of Environment Australia (ESP Project No. 440) Department of Conservation and Land Management Western Australia 2001 ISSN 0816-9713 Cover photograph: Grevillea maccutcheonii by Andrew Brown Editorial..................................................................................................... Kim Williams, Andrew Horan Editors and page preparation....................................................Kim Williams, Andrew Horan, Jill Pryde Maps....................................................................................................................................Kim Williams 2 FOREWORD Western Australian Wildlife Management Programs are a series of publications produced by the Department of Conservation and Land Management (CALM). The programs are prepared in addition to Regional Management Plans to provide detailed information and guidance for the management and protection of certain exploited or threatened species (e.g. Kangaroos, Noisy Scrub-bird and the Rose Mallee). This program provides a brief description of the appearance, distribution, habitat and conservation status of flora declared as -
Moving Plants – Revealing the Past and Informing the Future
Moving plants – revealing the past and informing the future Margaret Byrne Biotic responses - genetic signatures Changes in climate Changes in size, Changes in and environment distribution and genetic diversity interactions and structure Genetic signatures differ for • localised persistence – high haplotype diversity, high population differentiation • contraction to macro refugia – high diversity • range expansion – low haplotype diversity, low population differentiation Phylogeography – geographical distribution of genealogical lineages inference of biotic responses Plants – chloroplast DNA – slowly evolving, evolutionary history Localised persistence High diversity, high pop differentiation MAP AREA 800,000 years Acacia accuminata 700,000 years Eucalyptus loxophleba 1 million years Santalum spicatum Byrne 2008 QSR Byrne et al. 2002, 2003; Byrne & Hines 2004 Localised persistence High diversity, high pop differentiation Bossiaea ornata Kennedia coccinea Bradbury et al. 2015a, b Localised persistence Allocasuarina humilis Corymbia calophylla High diversity, high pop differentiation Some low diversity, low differentiation Llorens et al. 2017; Sampson et al. 2018 Refugia and expansion High diversity / Low diversity, low pop differentiation Calothamnus quadrifidus Eucalyptus wandoo Current LGM Nistelberger et al. 2014; Dalmaris et al. 2015 Inferences Localised persistence – major response local climate conditions, broad fundamental niche/adaptation importance of mosaic of habitats in heterogeneous landscapes Some evidence for ‘major’ refugia -
Mitochondrial Gene Flow
Proc. NatI. Acad. Sci. USA Vol. 81, pp. 1764-1767, March 1984 Genetics Mitochondrial gene flow (population genetics/interspedfic gene flow/mitochondrial DNA) NAOYUKI TAKAHATA*t AND MONTGOMERY SLATKIN Department of Zoology, NJ-15, University of Washington, Seattle, WA 98195 Communicated by W. T. Edmondson, November 28, 1983 ABSTRACT To account for the transmission of mitochon- drial genotype because of the linkage disequilibrium between drial DNA between Nonspecific species Drosophila pseudoob- them. This could be important for interspecific gene flow scura and D. pprsimilis in sympatry reported by J. R. Powell especially, because it is reasonable to expect some selection [Powell, J. R. (1983) Proc. Nail. Acpd. Sci. USA 80, 492-495], against hybrids. Powell (1) proposes selection against het- a simple model of gene flow and selection in infinite popula- erozygotes as one mechanism for preventing the interchange tions is analyzed. The model assumes two alleles at each of two of nuclear genes among the two Drosophila species. Another loci, one of which is coded by an autosome and the other' by mechanism Powell suggests is assortative mating. If the hy- mitochondrial DNA. Viability selection is'presumed to be un- brids are able to mate with only one of the parental species derdominant-i.e., heterozygous inferiority to the homozy- and the backcrosses tend to mate with the same parental spe- gotes- at an autosomal locus, and neutral or deleterious at a cies, then nuclear and mitochondrial gene flow between spe- mitochondrial locus, with'the combined action being multipli- cies could be lower than expected on the basis of'the number cative. -
Chapter 23: Population Genetics (Microevolution) Microevolution Is a Change in Allele Frequencies Or Genotype Frequencies in a Population Over Time
Chapter 23: Population Genetics (Microevolution) Microevolution is a change in allele frequencies or genotype frequencies in a population over time Genetic equilibrium in populations: the Hardy-Weinberg theorem Microevolution is deviation from Hardy- Weinberg equilibrium Genetic variation must exist for natural selection to occur . • Explain what terms in the Hardy- Weinberg equation give: – allele frequencies (dominant allele, recessive allele, etc.) – each genotype frequency (homozygous dominant, heterozygous, etc.) – each phenotype frequency . Chapter 23: Population Genetics (Microevolution) Microevolution is a change in allele frequencies or genotype frequencies in a population over time Genetic equilibrium in populations: the Hardy-Weinberg theorem Microevolution is deviation from Hardy- Weinberg equilibrium Genetic variation must exist for natural selection to occur . Microevolution is a change in allele frequencies or genotype frequencies in a population over time population – a localized group of individuals capable of interbreeding and producing fertile offspring, and that are more or less isolated from other such groups gene pool – all alleles present in a population at a given time phenotype frequency – proportion of a population with a given phenotype genotype frequency – proportion of a population with a given genotype allele frequency – proportion of a specific allele in a population . Microevolution is a change in allele frequencies or genotype frequencies in a population over time allele frequency – proportion of a specific allele in a population diploid individuals have two alleles for each gene if you know genotype frequencies, it is easy to calculate allele frequencies example: population (1000) = genotypes AA (490) + Aa (420) + aa (90) allele number (2000) = A (490x2 + 420) + a (420 + 90x2) = A (1400) + a (600) freq[A] = 1400/2000 = 0.70 freq[a] = 600/2000 = 0.30 note that the sum of all allele frequencies is 1.0 (sum rule of probability) . -
Gene Flow in Coral Reef Organisms of the Tropical Eastern Pacific 16
Gene Flow in Coral Reef Organisms of the Tropical Eastern Pacific 16 H.A. Lessios and Iliana B. Baums Abstract Gene flow can provide cohesion between conspecific populations. In order to obtain an indirect measure of gene flow between coral reef species in the eastern tropical Pacific (ETP) and between these populations and those of the rest of the Pacific we compiled available data from sequences of DNA and microsatellites for corals, gastropods, echinoderms and fishes, and calculated FST statistics. The ETP consists of a narrow strip of continental shelf along the coast of the Americas and a deeper water gap between the coast and the outer eastern Pacific Islands; a large expanse of deep ocean separates the ETP and the closest islands in the central Pacific. We have, therefore, compared populations in four major directions: (1) between the eastern and the central Pacific, (2) between the coast and the outer islands, (3) among the outer islands, and (4) along the coast and nearshore islands. The available data are biased in favor of showing high levels of gene flow because they contain an excess of transpacific species, which are a minority among ETP biota. Despite this bias, shallow water populations of the ETP are isolated from the rest of the world’s oceans. Occasional breaching of the expanse of water between the ETP and the Central Pacificby some species is also possible. Gene flow between the outer eastern Pacific islands and the mainland coast is variable, depending on the species examined. Gene flow among populations at the outer eastern Pacific islands is high except for those at Easter Island (Rapa Nui), in which all but one sampled species show large and significant values of FST in comparisons with populations from all other islands. -
Defining Genetic Diversity (Within a Population)
Primer in Population Genetics Hierarchical Organization of Genetics Diversity Primer in Population Genetics Defining Genetic Diversity within Populations • Polymorphism – number of loci with > 1 allele • Number of alleles at a given locus • Heterozygosity at a given locus • Theta or θ = 4Neμ (for diploid genes) where Ne = effective population size μ = per generation mutation rate Defining Genetic Diversity Among Populations • Genetic diversity among populations occurs if there are differences in allele and genotype frequencies between those populations. • Can be measured using several different metrics, that are all based on allele frequencies in populations. – Fst and analogues – Genetic distance, e.g., Nei’s D – Sequence divergence Estimating Observed Genotype and Allele Frequencies •Suppose we genotyped 100 diploid individuals (n = 200 gene copies)…. Genotypes AA Aa aa Number 58 40 2 Genotype Frequency 0.58 0.40 0.02 # obs. for genotype Allele AA Aa aa Observed Allele Frequencies A 116 40 0 156/200 = 0.78 (p) a 0 40 4 44/200 = 0.22 (q) Estimating Expected Genotype Frequencies Mendelian Inheritance Mom Mom Dad Dad Aa Aa Aa Aa •Offspring inherit one chromosome and thus A A one allele independently A a and randomly from each parent AA Aa •Mom and dad both have genotype Aa, their offspring have Mom Dad Mom Dad Aa Aa three possible Aa Aa genotypes: a A a a AA Aa aa Aa aa Estimating Expected Genotype Frequencies •Much of population genetics involves manipulations of equations that have a base in either probability theory or combination theory. -Rule 1: If you account for all possible events, the probabilities sum to 1.