On the Coevolution of Ediacaran Oceans and Animals

Total Page:16

File Type:pdf, Size:1020Kb

On the Coevolution of Ediacaran Oceans and Animals On the coevolution of Ediacaran oceans and animals Yanan Shen*†, Tonggang Zhang*, and Paul F. Hoffman†‡ *De´partement des Sciences de la Terre et de l’Atmosphe`re, Universite´du Que´bec, Montre´al, QC, Canada H3C 3P8; and ‡Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 Contributed by Paul F. Hoffman, March 4, 2008 (sent for review December 3, 2007) Fe speciation and S-isotope of pyrite data from the terminal mostly buried by younger rocks. Southwest of the Plateau Thrust Proterozoic Sheepbed Formation in Canada and Doushantuo For- system, a single transverse structural culmination exposes three mation in China reveal that ocean deep waters were anoxic after separate inliers of Ediacaran strata, the most easterly of which the global glaciations (snowball Earth) ending 635 million years (Sekwi Brook) contains a moderately diverse assemblage of ago, but that marine sulfate concentrations and inferentially at- mostly disk-shaped macrofossils, apparently representing the mospheric oxygen levels were higher than before the glaciations. bases of sessile, polypoid, and frond-like, soft-bodied organisms, This supports a long-postulated link between oxygen levels and as well as rare ovate segmented fossils, and abundant simple or the emergence of eumetazoa. Subsequent ventilation of the deep irregularly meandering burrows (28–30). The oldest fossils (five ocean, inferred from shifts in Fe speciation in Newfoundland genera of disk-shaped forms) occur in the middle Sheepbed (previously published data) and western Canada (this report), Formation (Fig. 1), a 1,050-m-thick sequence of black shales, paved the way for Ediacaran macrobiota to colonize the deep turbiditic siltstones, and contour-current sands, deposited at seafloors. estimated water depths of 1–1.5 km on an open-marine conti- nental slope subject to geostrophic currents (26). They are much atmospheric oxygen ͉ iron speciation ͉ sulfur isotopes ͉ larger and more diverse than the simple discs found between the Sheepbed Formation ͉ Doushantuo Formation two Cryogenian glacial horizons in the same area (31). The shelf–slope transition is best exposed on Stelfox Mountain pair of global glaciations (1) between 725 and 635 million years (Fig. 1), 25 km northeast of Sekwi Brook, where a major Aago (Cryogenian Period) was followed by the appearance and down-to-southwest breakaway paleoscarp (32) marks the outer diversification of (mainly nonskeletal) multicellular animals in the edge of the Keele Formation, a mixed carbonate-clastic shelf Ediacaran Period from 635 to 541 million years ago (2–7). The sequence beneath the end-Cryogenian glacial horizon (33). The oldest animal fossils include diapause egg and embryo cysts (Tian- submarine landslide responsible for the paleoscarp generated an zhushania spinosa) from the lower Doushantuo Formation (Ϸ632 enormous megabreccia, the Durkan Formation (32), carrying Ma) in South China (8) and lipid biomarkers (24-isopropyl- house-size blocks of Keele shelf lithologies. The landslide is cholestane) diagnostic of marine demosponges in late Cryogenian thought to be unrelated to the subsequent glaciation (32), the and early Ediacaran strata of Oman (9). In contrast, colonization retreat of which left a blanket (Stelfox Member) of nonstratified of the deep seafloor (below the euphotic zone) by large soft-bodied diamictite (marine till) and ice-rafted debris on both the hanging organisms was delayed until mid-Ediacaran time Ϸ579 Ma (10–14). wall and footwall of the paleoscarp (Fig. 1). Stelfox diamictite is The delayed appearance of large animals in the fossil record, Ϸ600 overlain by a well developed syn-deglacial ‘‘cap’’ dolostone million years after multicellularity arose in algae (15), inspired the (Ravensthroat Formation) with giant wave ripples and corrugate hypothesis that an increase in atmospheric oxygen catalyzed early stromatolites, overlain discontinuously by limestone (Hayhook animal evolution (6, 16–22). Formation) with seafloor cements (27). At Stelfox Mountain, Recent chemostratigraphic studies provide some evidence for the dolostone-limestone couplet tapers downslope because of progressive oxygenation of the Ediacaran ocean (23), including slump-related truncation (Fig. 1). The Ravensthroat Formation mid-Ediacaran (ca. 580 Ma) deep waters (24). The first study is widely assumed to be correlative with the Nuccaleena cap based its inference mainly on increasing sulfur isotope fraction- dolostone at the global stratotype section and point (GSSP) in ation between coexisting sulfides and carbonate-associated sul- South Australia, which defines the base of the Ediacaran Period fate (23); the second was based on the low ratios between highly (34, 35). reactive Fe and total Fe (FeHR/FeT) (24). These data purport The basal Ediacaran cap-carbonate couplet is overlain every- to ‘‘see’’ through the veil of diagenesis under the influence of where by a thick black shale, the Sheepbed Formation, which anoxic pore-waters to the redox state of ancient seawater. Here, grades into flaggy dark limestones of the overlying Gametrail we present Fe speciation and S-isotope of pyrite data from Formation on Stelfox Mountain (Fig. 1). The shale is associated deep-water ocean-margin settings in northwestern Canada and with long-term flooding of the shelf after the end-Cryogenian in South China that point to an extended early Ediacaran interval (‘‘Marinoan’’) glaciation. A stratigraphically and lithologically of sulfate-rich oceans with sulfidic deep waters, implying an homologous section of Sheepbed Formation occurs at Shale oxygen-rich atmosphere, followed by the ventilation of deep Lake, 130 km to the northwest. Like Stelfox Mountain, the Shale waters in mid-Ediacaran time. Lake section is situated on the extreme edge of the Keele shelf (26–28). The Gametrail at Shale Lake is a cliff-forming crystal- Geological Setting line dolostone. We elected to measure and sample the Sheepbed Northwest Canada. Ediacaran strata of the Windermere Super- group (25) are exposed for Ͼ500 km along the concave-to- southwest arc of the Mackenzie Mountains, the topographic Author contributions: Y.S. and P.F.H. designed research; Y.S., T.Z., and P.F.H. performed expression of the early Cenozoic foreland thrust-fold belt of the research; Y.S. analyzed data; and Y.S. and P.F.H. wrote the paper. northern Canadian Cordillera. Because of a low-angle uncon- The authors declare no conflict of interest. formity with overlying Cambrian strata, the Ediacaran is mainly Freely available online through the PNAS open access option. limited to the Plateau Thrust system, an outcrop belt less than †To whom correspondence may be addressed. E-mail: [email protected] or Ϸ30 km wide. Fortuitously, it preserves the shelf-to-slope tran- [email protected]. sition of an Ediacaran passive continental margin (25–27). To This article contains supporting information online at www.pnas.org/cgi/content/full/ the northeast (landward), Ediacaran strata were removed by 0802168105/DCSupplemental. sub-Cambrian erosion and to the southwest (seaward), they are © 2008 by The National Academy of Sciences of the USA 7376–7381 ͉ PNAS ͉ May 27, 2008 ͉ vol. 105 ͉ no. 21 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0802168105 Downloaded by guest on October 2, 2021 SE G a m e t r a i l F o r m a t i o n NW 0.0 0.2 0.4 0.6 0.8 -200 20 40 d e b p e e h S r e p p U p p e r S h e e p b e d 1000 500 LITHOFACIES 660 ) )ekaL e )ekaL E Ediacaran macrofossils m( cc cc evob esab fo debpeehS mF contour-current siltstone 640 500 900 O x greyi c turbiditic S h siltstone e e p b e d 400 l black pyritic shale a 620 h limestone with crystal fans li mF S( E peloidal dolostone with giant wave ripples 800 600 dolostone with corrugate 300 a stromatolites rtemaG a glacigenic diamictite t 580 hgieh d e b p e e h S e l l e S h e e p b e d green turbiditic siltstone 400 landslide mega-breccia 700 FeHR epigenetic dolostone 200 560 cc /FeT E flaggy limestone shift 0 1 24356 o crossbedded sandstone δ13C ( /oo VPDB) d d i M i d 600 d c i x o n A A n o x i c e b p p b e 100 E cc e e h S h e e 300 E cc 500 Hayhook 0 Ravensthroat Stelfox 400 -100 Sheepbed 200 d e b p p b e d breakaway 300 paleoscarp -200 e e h h e e FeHR/FeT S r e w w e r S Stelfox k o Keele 200 o -300 shift r Delthore B o o e L c I c 100 Durkan 100 -400 Stelfox Mountain Aitken (1991) EVOLUTION 0 (this work) Ice -500 Twitya Brook Sekwi Brook Shale Lake 0 Dalrymple & Narbonne (this work) 0.0 0.2 0.4 0.6 0.8 -200 20 40 (1996) o FeHR / FeT δ34S ( /oo CDT) Fig. 1. Fe speciation and S-isotopic data from the Sheepbed Formation and C-isotope data from the Gametrail Formation in the Shale Lake section, Northwest GEOLOGY Territories, Canada. Correlative sections at Stelfox Mountain (32) and Sekwi Brook (26) are shown for reference. Note the shift in FeHR/FeT ratio between 138 and 160 m at Shale Lake. The dashed line separates anoxic deep water at Ͼ0.38 from oxic deep water at Ͻ0.38 (47). Fe speciation data of filled circles were measured by using the method in ref. 47, and the data of open circles were measured by using the method in ref. 52. Formation at two locations at Shale Lake. The first (64°31Ј40ЉN, problems related to faulting and submarine landsliding than with 129°30Ј15ЉW) exposes the basal 60 m of the Sheepbed Formation the slope section at Sekwi Brook (26).
Recommended publications
  • Download Download
    Dorjnamjaa et al. Mongolian Geoscientist 49 (2019) 41-49 https://doi.org/10.5564/mgs.v0i49.1226 Mongolian Geoscientist Review paper New scientific direction of the bacterial paleontology in Mongolia: an essence of investigation * Dorj Dorjnamjaa , Gundsambuu Altanshagai, Batkhuyag Enkhbaatar Department of Paleontology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia *Corresponding author. Email: [email protected] ARTICLE INFO ABSTRACT Article history: We review the initial development of Bacterial Paleontology in Mongolia and Received 10 September 2019 present some electron microscopic images of fossil bacteria in different stages of Accepted 9 October 2019 preservation in sedimentary rocks. Indeed bacterial paleontology is one the youngest branches of paleontology. It has began in the end of 20th century and has developed rapidly in recent years. The main tasks of bacterial paleontology are detailed investigation of fossil microorganisms, in particular their morphology and sizes, conditions of burial and products of habitation that are reflected in lithological and geochemical features of rocks. Bacterial paleontology deals with fossil materials and is useful in analysis of the genesis of sedimentary rocks, and sedimentary mineral resources including oil and gas. The traditional paleontology is especially significant for evolution theory, biostratigraphy, biogeography and paleoecology; however bacterial paleontology is an essential first of all for sedimentology and for theories sedimentary ore genesis or biometallogeny Keywords: microfossils, phosphorite, sedimentary rocks, lagerstatten, biometallogeny INTRODUCTION all the microorganisms had lived and propagated Bacteria or microbes preserved well as fossils in without breakdowns. Bacterial paleontological various rocks, especially in sedimentary rocks data accompanied by the data on the first origin alike natural substances.
    [Show full text]
  • Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities.
    [Show full text]
  • Dornbos.Web.CV
    Stephen Quinn Dornbos Associate Professor and Department Chair Department of Geosciences University of Wisconsin-Milwaukee Milwaukee, WI 53201-0413 Phone: (414) 229-6630 Fax: (414) 229-5452 E-mail: [email protected] http://uwm.edu/geosciences/people/dornbos-stephen/ EDUCATION 2003 Ph.D., Geological Sciences, University of Southern California, Los Angeles, CA. 1999 M.S., Geological Sciences, University of Southern California, Los Angeles, CA. 1997 B.A., Geology, The College of Wooster, Wooster, OH. ADDITIONAL EDUCATION 2002 University of Washington, Summer Marine Invertebrate Zoology Course, Friday Harbor Laboratories. 1997 Louisiana State University, Summer Field Geology Course. PROFESSIONAL EXPERIENCE 2017-Present Department Chair, Department of Geosciences, University of Wisconsin-Milwaukee. 2010-Present Associate Professor, Department of Geosciences, University of Wisconsin-Milwaukee. 2004-2010 Assistant Professor, Department of Geosciences, University of Wisconsin-Milwaukee. 2012-Present Adjunct Curator, Geology Department, Milwaukee Public Museum. 2004-Present Curator, Greene Geological Museum, University of Wisconsin- Milwaukee. 2003-2004 Postdoctoral Research Fellow, Department of Earth Sciences, University of Southern California. 2002 Research Assistant, Invertebrate Paleontology Department, Natural History Museum of Los Angeles County. EDITORIAL POSITIONS 2017-Present Editorial Board, Heliyon. 2015-Present Board of Directors, Coquina Press. 2014-Present Commentaries Editor, Palaeontologia Electronica. 2006-Present Associate Editor, Palaeontologia Electronica. Curriculum Vitae – Stephen Q. Dornbos 2 RESEARCH INTERESTS 1) Evolution and preservation of early life on Earth. 2) Evolutionary paleoecology of early animals during the Cambrian radiation. 3) Geobiology of microbial structures in Precambrian–Cambrian sedimentary rocks. 4) Cambrian reef evolution, paleoecology, and extinction. 5) Exceptional fossil preservation. HONORS AND AWARDS 2013 UWM Authors Recognition Ceremony. 2011 Full Member, Sigma Xi.
    [Show full text]
  • Exceptionally Preserved Fossil Assemblages Through Geologic Time and Space
    Gondwana Research 48 (2017) 164–188 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR Focus Review Exceptionally preserved fossil assemblages through geologic time and space A.D. Muscente a,⁎, James D. Schiffbauer b, Jesse Broce b, Marc Laflamme c, Kenneth O'Donnell d,ThomasH.Boage, Michael Meyer f, Andrew D. Hawkins g,JohnWarrenHuntleyb, Maria McNamara h, Lindsay A. MacKenzie i, George D. Stanley Jr. j, Nancy W. Hinman j, Michael H. Hofmann j, Shuhai Xiao g a Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA b Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA c Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada d AECOM, Germantown, MD 20876, USA e Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA f Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA g Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA h School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland i Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454, USA j Department of Geosciences, University of Montana, Missoula, MT 59812, USA article info abstract Article history: Geologic deposits containing fossils with remains of non-biomineralized tissues (i.e. Konservat-Lagerstätten) Received 23 February 2017 provide key insights into ancient organisms and ecosystems. Such deposits are not evenly distributed through Received in revised form 13 April 2017 geologic time or space, suggesting that global phenomena play a key role in exceptional fossil preservation.
    [Show full text]
  • Ediacaran Algal Cysts from the Doushantuo Formation, South China
    Geological Magazine Ediacaran algal cysts from the Doushantuo www.cambridge.org/geo Formation, South China Małgorzata Moczydłowska1 and Pengju Liu2 1 Original Article Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden and 2Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China Cite this article: Moczydłowska M and Liu P. Ediacaran algal cysts from the Doushantuo Abstract Formation, South China. Geological Magazine https://doi.org/10.1017/S0016756820001405 Early-middle Ediacaran organic-walled microfossils from the Doushantuo Formation studied in several sections in the Yangtze Gorges area, South China, show ornamented cyst-like vesicles Received: 24 February 2020 of very high diversity. These microfossils are diagenetically permineralized and observed in pet- Revised: 1 December 2020 rographic thin-sections of chert nodules. Exquisitely preserved specimens belonging to seven Accepted: 2 December 2020 species of Appendisphaera, Mengeosphaera, Tanarium, Urasphaera and Tianzhushania contain Keywords: either single or multiple spheroidal internal bodies inside the vesicles. These structures indicate organic-walled microfossils; zygotic cysts; reproductive stages, endocyst and dividing cells, respectively, and are preserved at early to late Chloroplastida; microalgae; animal embryos; ontogenetic stages in the same taxa. This new evidence supports the algal affiliations for the eukaryotic evolution studied taxa and refutes previous suggestions of Tianzhushania being animal embryo or holo- Author for correspondence: Małgorzata zoan. The first record of a late developmental stage of a completely preserved specimen of Moczydłowska, Email: [email protected] T. spinosa observed in thin-section demonstrates the interior of vesicles with clusters of iden- tical cells but without any cavity that is diagnostic for recognizing algal cysts vs animal diapause cysts.
    [Show full text]
  • The Anatomy, Affinity, and Phylogenetic Significance of Markuelia
    EVOLUTION & DEVELOPMENT 7:5, 468–482 (2005) The anatomy, affinity, and phylogenetic significance of Markuelia Xi-ping Dong,a,Ã Philip C. J. Donoghue,b,Ã John A. Cunningham,b,1 Jian-bo Liu,a andHongChengc aDepartment of Earth and Space Sciences, Peking University, Beijing 100871, China bDepartment of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK cCollege of Life Sciences, Peking University, Beijing 100871, China ÃAuthors for correspondence (email: [email protected], [email protected]) 1Present address: Department of Earth and Ocean Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK. SUMMARY The fossil record provides a paucity of data on analyses have hitherto suggested assignment to stem- the development of extinct organisms, particularly for their Scalidophora (phyla Kinorhyncha, Loricifera, Priapulida). We embryology. The recovery of fossilized embryos heralds new test this assumption with additional data and through the insight into the evolution of development but advances are inclusion of additional taxa. The available evidence supports limited by an almost complete absence of phylogenetic stem-Scalidophora affinity, leading to the conclusion that sca- constraint. Markuelia is an exception to this, known from lidophorans, cyclonerualians, and ecdysozoans are primitive cleavage and pre-hatchling stages as a vermiform and direct developers, and the likelihood that scalidophorans are profusely annulated direct-developing bilaterian with terminal primitively metameric. circumoral and posterior radial arrays of spines. Phylogenetic INTRODUCTION et al. 2004b). Very early cleavage-stage embryos of presumed metazoans and, possibly, bilaterian metazoans, have been re- The fossil record is largely a record of adult life and, thus, covered from the late Neoproterozoic (Xiao et al.
    [Show full text]
  • Of Time and Taphonomy: Preservation in the Ediacaran
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved.
    [Show full text]
  • 3.5 Life Gets
    compelling. Researchershave found fossils in 2.6-billion-yearo1d rocks,for example,that bear a striking resemblanceto cyanobac- teria,the lineageof bacteriathat carriesout photosynthesis.That's exactlywhen the first evidenceof atmosphericoxygen appearsin the fossil record; between 2.45 and 2.32 billion years ago,oxygen increaseddramatically. The rise in oxygen was likely the result of the emergenceof cyanobacteria,which releaseoxygen during photosynthesis.While oxygen levels increaseddramatically dur- ing this time, they were still very low compared to today. As a result,purple sulfur bacteriawere still abundant1.6 billion years ago,as reflectedby the presenceof okenane. Archaeaalso make an early but ambiguous-appearance in the fossil record. ln 2006, Yuichiro Ueno and his colleaguesat Tokyo Institute of Technologywere able to extract methane from 3.S-billionyear-old rocks from Australia.The methane had a low fraction of carbon-13,indicating that it had been producedbio- logically(Ueno et al. 2006).Only one group of organismsalive todayreleases methane: a lineageofarchaea called Euryarchaeota. Among the placesthey live today is the digestivetract of cows; they'rethe reasonsthat cow belchescontain methane. Eukaryaemerge in the fossil record only about 1.8 billion yearsago. Their first fossilsare single celled organisms measuring about 100micrometers across. While they would havebeen invis- ible to the nakedeye, they marked a giant leap in size,measur- ing about 100times biggerthan a typical bacterium.These early eukaryoteshad ridges,plates, and otherstructures that aresimilar to thoseof living singlecelled eukaryotes. Over the next billion years,the diversityof thesesingle-celled eukaryotes increased, as some lineagesevolved to carry out photosynthesiswhile others preyed on bacteriaor grazedon their photosyntheticrelatives (Knollet al.2OO6\.
    [Show full text]
  • Not Algae, Not Embryos, but Cysts?
    in the press Not algae, not embryos, but cysts? Few fossils are as hotly debated as those claimed to be of early animals — and few of The journalist’s take those are as controversial as the tiny blobs found in the Doushantuo Formation of Palaeontologists aren’t the only ones So goes the story of the Doushantuo southern China. fascinated with the world’s oldest animals. fossils: changing in scientific opinion from The Doushantuo blobs occupy a Journalists frequently cover studies that algae to animal embryos to something not crucial point in evolutionary history. report an advance in understanding the early necessarily animal (Science 314, 291–294; Uncontroversially dated to about 570 million evolution of life — such as the discovery of 2006) to giant sulphur bacteria (Nature years ago, they are remains of the Ediacaran possible 3.4-billion-year-old cellular fossils 445, 198–201; 2007) to now, apparently, period — the time when multicellular from Australia (Nature Geosci. 4, 698–702; a spore-forming cyst. Reporters have to organisms began to appear, but preceding the 2011) that landed on the front page of decide how often they want to wade into vast diversification of animal-body designs in The New York Times last August (http:// such ever-shifting hypotheses. Editors are the ‘Cambrian explosion’. go.nature.com/SIhYgE). prone to ask, quite sensibly, “Haven’t we The identity of these fossils has long been The challenge for reporters is to cover done that story before?” In the case of the contested. Once thought to be algae, the the back-and-forth nature of such claims, in latest Doushantuo fossil paper, Science News fossils were re-interpreted in 1998 — to great which one announcement is challenged by decided to revisit the question because of palaeontological excitement — as embryos a second — and often a third or a fourth — the extensive new data and because it had of some of the earliest animals (Nature before the original hypothesis may resurface not covered several of the recent twists in 391, 553–558; 1998).
    [Show full text]
  • New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain
    New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain ANDREY YU. ZHURAVLEV, ELADIO LIÑÁN, JOSÉ ANTONIO GÁMEZ VINTANED, FRANÇOISE DEBRENNE, and ALEKSANDR B. FEDOROV Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Debrenne, F., and Fedorov, A.B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57 (1): 205–224. A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of or− ganization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Si− berian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina,the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoprotero− zoic trace fossil assemblages.
    [Show full text]
  • Supplementary Information
    Supplementary Information Ocean oxygenation in the wake of the Marinoan glaciation Swapan K. Sahoo, Noah J. Planavsky, Brian Kendall, Xinqiang Wang, Xiaoying Shi, Clinton SUPPLEMENTARYScott, Ariel D. Anbar, INFORMATION Timothy W. Lyons & Ganqing Jiang doi:10.1038/nature11445 Stratigraphy and paleogeographic reconstruction of the Doushantuo Formation The Ediacaran Doushantuo Formation (ca. 635551 Ma)1 in South China overlies the late Cryogenian Nantuo Formation (ca. 654635 Ma)2. The type section of the Doushantuo Formation is defined in the Yangtze Gorges area where it is divided into four members36. Member I refers to the 3-6-m-thick cap carbonate at the base of the Doushantuo Formation. Member II consists of alternating organic-rich shale and carbonates with abundant centimeter- sCale Chert nodules. Member III Consists of predominately carbonates with bedded chert layers and minor shale laminae. Member IV refers to the ca. 10-m-thick black, organic-rich shale interval at the top of the Doushantuo Formation. The thickness of the Doushantuo Formation varies from 40 to 200 m and lateral facies change from shallow-water phosphatic dolostone to deeper-water black shale and siliceous shales4-6. The Doushantuo cap carbonate (Member I)7,8 and the organiC-riCh blaCk shale of Member IV serve as the marker beds for the overall stratigraphic correlation across the Nanhua basin6. The Doushantuo Formation was deposited as part of a passive continental margin succession9-11. The paleogeographic reconstruction of the Doushantuo Formation (Fig. S1) was based on the faCies analyses aCross the shelf-to-basin transeCts6. The uniform thickness and similar facies of the Doushantuo cap carbonate (Member I) and its immediately overlying black shales (lower Member II) aCross the basin suggest an open shelf setting at the beginning of the Doushantuo deposition (Fig.
    [Show full text]
  • The Origin of Animals: Can Molecular Clocks and the Fossil Record Be Reconciled?
    Prospects & Overviews Review essays The origin of animals: Can molecular clocks and the fossil record be reconciled? John A. Cunningham1)2)Ã, Alexander G. Liu1)†, Stefan Bengtson2) and Philip C. J. Donoghue1) The evolutionary emergence of animals is one of the most Introduction significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that The apparent absence of a fossil record prior to the appearance of trilobites in the Cambrian famously troubled Darwin. He animals originated and began diversifying over 100 million wrote in On the origin of species that if his theory of evolution years before the first definitive metazoan fossil evidence in were true “it is indisputable that before the lowest [Cambrian] the Cambrian. However, closer inspection reveals that clock stratum was deposited ... the world swarmed with living estimates and the fossil record are less divergent than is creatures.” Furthermore, he could give “no satisfactory answer” often claimed. Modern clock analyses do not predict the as to why older fossiliferous deposits had not been found [1]. In the intervening century and a half, a record of Precambrian presence of the crown-representatives of most animal phyla fossils has been discovered extending back over three billion in the Neoproterozoic. Furthermore, despite challenges years (popularly summarized in [2]). Nevertheless, “Darwin’s provided by incomplete preservation, a paucity of phylo- dilemma” regarding the origin and early evolution of Metazoa genetically informative characters, and uncertain expecta- arguably persists, because incontrovertible fossil evidence for tions of the anatomy of early animals, a number of animals remains largely, or some might say completely, absent Neoproterozoic fossils can reasonably be interpreted as from Neoproterozoic rocks [3].
    [Show full text]