Pithecellobium Saman (Jacq.) Benth. Monkey-Pod Leguminosae Legume Family

Total Page:16

File Type:pdf, Size:1020Kb

Pithecellobium Saman (Jacq.) Benth. Monkey-Pod Leguminosae Legume Family Pithecellobium saman (Jacq.) Benth. Monkey-Pod Leguminosae Legume family Roger G. Skolmen Monkey-pod (Pithecellobium saman), saman in naturalized in Hawaii, Puerto Rico, and the Virgin Spanish, is a fast-growing tree that has been intro- Islands (3,10). The tree was reportedly introduced duced to many tropical countries throughout the into Hawaii in 1847, when Peter A. Brinsmade, a world from its native habitats in Central America businessman visiting Europe, returned to Hawaii, and northern South America. Although generally presumably via Panama, with two seeds, both of planted as a shade tree and ornamental, it has been which germinated. One of the seedlings was planted naturalized in many countries and is greatly valued in downtown Honolulu, the other at Koloa on the in pastures as shade for cattle. Short-boled, with a island of Kauai. These seedlings are possibly the spreading crown when open grown, it forms a long, progenitors of all the monkey-pod trees now in relatively straight stem when closely spaced. Its Hawaii (1). Monkey-pod may have been introduced wood is highly valued in some locations for carvings into Puerto Rico and Guam as early as the 16th and furniture (7). century. The most widely used common name for the species is raintree, from the belief that the tree Climate produces rain at night. The leaflets close up at night or when under heavy cloud cover, allowing rain to Monkey-pod grows in a broad annual rainfall pass easily through the crown. This trait may con- range of 640 to 3810 mm (25 to 150 in). On wet sites tribute to the frequently observed fact that grass (1270 mm 150 in] or more), its growth is often rapid. remains green under the trees in times of drought. This rapid growth is at times objectionable because However, the shading effect of the crown, the addi- the tree forms a large mat of surface roots and the tion of nitrogen to the soil by decomposition of litter crown becomes top heavy, thereby overbalancing the from this leguminous tree, and possibly, the sticky tree (5). In Hawaii, the climate in locations where the droppings of cicada insects in the trees all contribute tree is naturalized and spreading rapidly has winter to this phenomenon (3). The Hawaiian common maximum rainfall ranging from 1140 to 2030 mm (45 name, monkey-pod, is used here because it is a logi- to 80 in>, with a temperature range of 10” to 30” C cal derivation of the scientific name Pithecellobium (50” to 86” F). These climatic conditions are found (monkey earring in Greek). Besides monkey-pod, between elevations of 15 to 245 m (50 to 800 ft) at raintree, and saman, which is its name throughout several sites on three islands. Elsewhere, the tree is Latin America, the tree is called mimosa in the reported to grow at elevations of 0 to 700 m (0 to Philippines. 2,300 ft) (15). It is, however, very intolerant of frost and also, if grown near the shore, of windblown Habitat saltwater spray. Native Range Soils and Topography Monkey-pod is native from the Yucatan Peninsula Monkey-pod attains its best growth on deep al- in Mexico, through Guatemala to Peru, Bolivia, and luvial soils that are well drained and neutral to Brazil (3). It grows naturally in latitudes from 5” S. slightly acid in reaction. In Hawaii, most areas to to 11” N. (13). Cultivated throughout the tropics as which monkey-pod is well adapted are used for cul- a shade tree, it has been found in Burma, Ceylon, tivated crops. It has naturalized, however, on gently India, Jamaica, Nigeria, Sabah, Trinidad, Uganda, to steeply sloping Oxisols and Inceptisols on certain and the island of Zanzibar (12). The species is sites. On these sites it is most common in gullies naturalized in most of these countries as well as in where the soil is deeper and more moist than on the Philippines and Fiji (7). adjacent hills and ridges. It can, however, grow well In the United States and its possessions, monkey- on a wide variety of soils when planted and can pod grows in Hawaii, Florida, Puerto Rico, the Virgin withstand seasonal flooding (15). Islands, Guam, and the Northern Marianas. It is Associated Forest Cover The author is Principal Silviculturist (retired), Pacific Southwest Monkey-pod is frequently found on old home sites Forest and Range Experiment Station, Berkeley, CA. near streams in the forests of Hawaii where it is 507 Pithecellobium saman usually associated with mango (Mangifera indica), ti root planting. Nursery seedlings are of plantable size (Cordyline terminalis), guava (Psidium guajava), and in about 4 months (15). other escaped domestic plants. Where naturalized, it Seedlings grow rapidly if maintained, reaching 2 is associated primarily with grasses, although oc- to 3 m (6 to 10 ft) within 1 year after planting. casionally with such trees or shrubs as koa-haole Natural seedlings, or planted seedlings that are not (Leucaena leucocephala), Java-plum (Eugenia weeded, are strongly inhibited by competition and cumini), and Christmas-berry (Schinus terebin- grow much more slowly. Seedlings and mature trees thifolius). are intolerant of shade (15) and extremely suscep- tible to damage by overspray of herbicides used in weed control. Life History Vegetative Reproduction-Monkey-pod roots Reproduction and Early Growth easily. Hardwood (leafless) cuttings, ranging in size from 1 by 15 cm (0.4 by 6 in) to stems and branches of mature trees, can be rooted in moist soil on a site Flowering and Fruiting-Monkey-pod may without use of mist or shade. In Honolulu, it is com- flower at any time of the year in Hawaii, but it mon practice to transplant huge trees by cutting usually flowers from April to August, with the peak away almost all the roots and all the branches. Trees of flowering in May. The flowers are perfect and form grown at close spacing in the forest frequently have in umbels. The clusters, with their numerous pink branch-free stems 4 to 5 m (13 to 16 ft) tall and are stamens, 3.8 cm (1.5 in) long, look like powderpuffs transplanted to parking lots and parks as “instant” in the tree crown. The flowers are insect pollinated. full-size shade trees. Despite the ease with which it Seed pods develop in from 6 to 8 months and fall to the ground intact, usually between December and April in Hawaii. The dark brown and relatively straight pods are usually 15 to 20 cm (6 to 8 in) long and contain from 5 to 20 seeds (3,s). Seed Production and Dissemination-Seeds are reddish-brown beans about 13 mm (0.5 in> long that drop from the pods when they open on the ground. Although the seeds are hard coated and long lived, some germinate soon after moistening by soil contact, resulting in a short period of prolific reproduction even under lawn and garden trees, Most or all of the reproduction dies or is destroyed by insects, rodents, and lawn mowing. Seeds are easily collected by gathering pods on the ground and drying them under cover until they open. Natural dissemination is by birds and rodents. Seeds number from 4,400 to 7,OOO/kg (2,000 to Figure l-Monkey-pod shade tree at Moanalua Gardens, Honolulu, showing large, rounded crown, typical of open-grown (15). 3,20O/lb) They can be stored dry at 0” to 3” C trees of this species. (32” to 38” F) in closed containers for lengthy periods with little loss of viability. Seeds are normally scarified; they are placed in water at 100” C (212” can be vegetatively propagated, monkey-pod is al- F), then allowed to cool overnight. Scarified seeds most always started from seed. usually germinate 3 to 4 days after sowing. Sapling and Pole Stages to Maturity Seedling Development-Germination is epigeal. Seedlings are usually grown from seed planted in Growth and Yield-One of the best known trees containers. In Hawaii, polyethylene bags are now the of this species is in Trinidad. When a little more than most commonly used containers for this purpose. 100 years old, this tree had a trunk 244 cm (96 in) Monkey-pod seedlings have also been grown in seed in diameter, was (reportedly) 44.8 m (147 ft) tall, and beds and successfully planted bare-root in Hawaii, had a crown spread of 57 m (187 ft) (3). The large, but not on a large scale. Severe drought stress usual- rounded crown of open-grown trees (fig. 1) provides ly results in high seedling mortality following bare- shade over a wide area. Huge trees such as these are 508 Pithecellobium saman extremely dificult to log, so young, smaller trees are Stressed trees, however, are sometimes attacked by sought after for utilization, particularly those that the monkeypod roundheaded borer (Xystrocera are forest-grown and have long boles. globosa), which makes large galleries in the sapwood Although primarily a shade tree, monkey-pod also (11). In Puerto Rico, ants (Myrmelachista has potential as a timber tree. After the first year of ramulorum) bore into branchlets, resulting in planting at close spacings in Western Samoa, defoliation and leaf deformation (14). The defoliators monkey-pod averaged 4 cm (1.6 in) d.b.h. and 4.4 m can be controlled with insecticides applied to the tree (14 ft) tall (2). Because of its large crown, however, trunks (13). The tree is highly susceptible to leaf it requires wide spacing in plantations. A spacing of damage from herbicide overspray. Leaves are also 2.4 by 2.4 m (8 by 8 ft) proved much too close in very susceptible to damage by salt-laden mist from Zanzibar (12).
Recommended publications
  • Mealy Bugs Attack on Rain Tree
    MEALY BUGS ATTACK ON RAIN TREE Geography of Mumbai city The Deccan region of India, the capital city of Maharashtra and economical capital of country, Mumbai lies on the western coast of India by the bank of Arabian Sea. Mumbai is made from the group of seven islands and is thus called as the Island city. It covers the total area of 603 sq. km. Most of this largest city of India is at sea level and the average altitude ranges from 10-15 metres from MSL. It has a hilly northern part and the highest point of Mumbai is at 450 metres in Sanjay Gandhi National Park. The eastern coast of Island has rows of mangroves, wherein the western coast happens to be sandy and stony. Due to proximity to the sea, the soil cover of this region is sandy to large extent. The rocks of this area are made up of Black Deccan Basalt pours, its acid and some basic variables. This island city of Mumbai is divided into two main regions, the city and the suburbs. These suburbs have alluvial soil type. Climate of Mumbai The Climate of Mumbai is a tropical wet and dry climate. Mumbai's climate can be best described as moderately hot with high degree of humidity. Its coastal nature and tropical location ensures temperatures won't fluctuate much throughout the year. The mean average is 27.2 °C and average rainfall is 242.2 cm (95.35 inches).[1] The mean maximum average temperatures in about 32 °C (90 °F) in summer and 30 °C (86 °F) in winter, while the average minimums are 25 °C (77 °F) in summer and 20.5 °C (68.9 °F) in winter.
    [Show full text]
  • Evaluation of Wood Properties from Six Native Species of Forest Plantations in Costa Rica
    BOSQUE 37(1): 71-84, 2016 DOI: 10.4067/S0717-92002016000100008 Evaluation of wood properties from six native species of forest plantations in Costa Rica Estudio de propiedades de la madera de seis especies nativas en plantaciones de Costa Rica Carolina Tenorio a, Róger Moya a*, Cynthia Salas a, Alexander Berrocal a * Corresponding author: a Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Apartado 159-7050, CIIBI-ITCR, Cartago, Costa Rica, [email protected] SUMMARY This study details information about physical, chemical and mechanical properties, drying, preservation and workability of wood from Cordia alliodora, Dipteryx panamensis, Enterolobium cyclocarpum, Hieronyma alchorneoides, Samanea saman and Vochysia ferruginea trees, growing in forest plantations in Costa Rica. Variation of the general properties in relation to height showed that heartwood percentage decreases, bark percentage increases and pith percentage is not affected. Dipteryx panamensis showed both the highest values for specific gravity and the highest mechanic resistance. Both chemical properties and extractives presence were different among species. Heartwood was not possible to preserve in any of the species, though sapwood was. Penetration varied from partial irregular or vascular in the species. The highest durability was for Hieronyma alchorneoides and Vochysia ferruginea, species classified as of high durability. Finally, all species had good performance in the workability tests. The previous results indicate that these species, used for trading reforestation in Costa Rica, have acceptable characteristics to be commercialized and used in wooden products. Key words: tropical species, Central America, wood variation, commercial wood. RESUMEN El presente estudio detalla información de las propiedades físicas, químicas, mecánicas, de secado, preservación y trabajabilidad de la madera de Cordia alliodora, Dipteryx panamensis, Enterolobium cyclocarpum, Hieronyma alchorneoides, Samanea saman y Vochysia ferruginea proveniente de plantaciones forestales en Costa Rica.
    [Show full text]
  • Vegetation Mapping of the Mariana Islands: Commonwealth of the Northern Mariana Islands and Territory of Guam
    VEGETATION MAPPING OF THE MARIANA ISLANDS: COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS AND TERRITORY OF GUAM NOVEMBER 2017 FINAL REPORT FRED AMIDON, MARK METEVIER1 , AND STEPHEN E. MILLER PACIFIC ISLAND FISH AND WILDLIFE OFFICE, U.S. FISH AND WILDLIFE SERVICE, HONOLULU, HI 1 CURRENT AGENCY: BUREAU OF LAND MANAGEMENT, MEDFORD, OR Photograph of Alamagan by Curt Kessler, USFWS. Mariana Island Vegetation Mapping Final Report November 2017 CONTENTS List of Figures ............................................................................................................................................................................ 3 List of Tables .............................................................................................................................................................................. 4 Abbreviations ............................................................................................................................................................................ 5 Summary ..................................................................................................................................................................................... 6 Introduction ............................................................................................................................................................................... 7 Description of Project Area ...........................................................................................................................................
    [Show full text]
  • Highlights in the History of Entomology in Hawaii 1778-1963
    Pacific Insects 6 (4) : 689-729 December 30, 1964 HIGHLIGHTS IN THE HISTORY OF ENTOMOLOGY IN HAWAII 1778-1963 By C. E. Pemberton HONORARY ASSOCIATE IN ENTOMOLOGY BERNICE P. BISHOP MUSEUM PRINCIPAL ENTOMOLOGIST (RETIRED) EXPERIMENT STATION, HAWAIIAN SUGAR PLANTERS' ASSOCIATION CONTENTS Page Introduction 690 Early References to Hawaiian Insects 691 Other Sources of Information on Hawaiian Entomology 692 Important Immigrant Insect Pests and Biological Control 695 Culex quinquefasciatus Say 696 Pheidole megacephala (Fabr.) 696 Cryptotermes brevis (Walker) 696 Rhabdoscelus obscurus (Boisduval) 697 Spodoptera exempta (Walker) 697 Icerya purchasi Mask. 699 Adore tus sinicus Burm. 699 Peregrinus maidis (Ashmead) 700 Hedylepta blackburni (Butler) 700 Aedes albopictus (Skuse) 701 Aedes aegypti (Linn.) 701 Siphanta acuta (Walker) 701 Saccharicoccus sacchari (Ckll.) 702 Pulvinaria psidii Mask. 702 Dacus cucurbitae Coq. 703 Longuiungis sacchari (Zehnt.) 704 Oxya chinensis (Thun.) 704 Nipaecoccus nipae (Mask.) 705 Syagrius fulvitarsus Pasc. 705 Dysmicoccus brevipes (Ckll.) 706 Perkinsiella saccharicida Kirk. 706 Anomala orientalis (Waterhouse) 708 Coptotermes formosanus Shiraki 710 Ceratitis capitata (Wiedemann) 710 690 Pacific Insects Vol. 6, no. 4 Tarophagus proserpina (Kirk.) 712 Anacamptodes fragilaria (Grossbeck) 713 Polydesma umbricola Boisduval 714 Dacus dorsalis Hendel 715 Spodoptera mauritia acronyctoides (Guenee) 716 Nezara viridula var. smaragdula (Fab.) 717 Biological Control of Noxious Plants 718 Lantana camara var. aculeata 119 Pamakani,
    [Show full text]
  • Biodiversiteitsopname Biodiversity Assessment
    Biodiversiteitsopname Biodiversity Assessment Bome - Trees (77 sp) Veldblomme - Flowering veld plants (65 sp) Grasse - Grasses (41 sp) Naaldekokers - Dragonflies (46 sp) Skoenlappers - Butterflies (81 sp) Motte - Moths (95 sp) Nog insekte - Other insects (102 sp) Spinnekoppe - Spiders (53 sp) Paddas - Frogs (14 sp) Reptiele - Reptiles (22 sp) Voëls - Birds (185 sp) Soogdiere - Mammals (23 sp) 4de uitgawe: Jan 2015 Plante/Plants Diere/Animals (24 000 spp in SA) Anthropoda Chordata (>150 000 spp in SA) Arachnida Insecta (spinnekoppe/spiders, 2020 spp in SA) Neuroptera – mayflies, lacewings, ant-lions (385 spp in SA) Odonata – dragonflies (164 spp in SA) Blattodea – cockroaches (240 spp in SA) Mantodea – mantids (185 spp in SA) Isoptera – termites (200 spp in SA) Orthoptera – grasshoppers, stick insects (900 spp in SA) Phthiraptera – lice (1150 spp in SA) Hemiptera – bugs (>3500 spp in SA) Coleoptera – beetles (18 000 spp in SA) Lepidoptera – butterflies (794 spp in SA), moths (5200 spp in SA) Diptera – flies (4800 spp in SA) Siphonoptera – fleas (100 spp in SA) Hymenoptera – ants, bees, wasps (>6000 spp in SA) Trichoptera – caddisflies (195 spp in SA) Thysanoptera – thrips (230 spp in SA) Vertebrata Tunicata (sea creatures, etc) Fish Amphibia Reptiles Birds Mammals (115 spp in SA) (255 spp in SA) (858 spp in SA) (244 spp in SA) Bome – Trees (n=77) Koffiebauhinia - Bauhinia petersiana - Dainty bauhinia Rooi-ivoor - Berchemia zeyheri - Red ivory Witgat - Boscia albitrunca - Shepherd’s tree Bergvaalbos - Brachylaena rotundata - Mountain silver-oak
    [Show full text]
  • Nutritive Value of Samanea Saman Seed and Whole Pod Meals As Feed Ingredients for Broiler Chickens by MARGARET ABA SAM HAGAN
    Nutritive Value of Samanea saman Seed and Whole Pod Meals as Feed Ingredients for Broiler Chickens BY MARGARET ABA SAM HAGAN MAY, 2013 Nutritive Value of Samanea saman Seed and Whole Pod Meals as Feed Ingredients for Broiler Chickens By Margaret Aba Sam Hagan (BSc. Agriculture) A thesis submitted to the Department of Animal Science, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE IN ANIMAL NUTRITION Faculty of Agriculture College of Agriculture and Natural Resources MAY, 2013 DECLARATION Candidate’s declaration I hereby declare that this thesis submitted for the Master of Science (Animal Nutrition) degree is the result of my own original work and that no part of it has been presented for another degree in this University or else where. However, work of other researchers and authors, which serve as sources of information, are duly acknowledged. MARGARET ABA SAM HAGAN ………………… ………………… Student (PG3156509) Signature Date Certified by: Professor Armstrong Donkoh ………………… ………………… Supervisor Signature Date Certified by: Doctor Victoria Attoh-Kotoku ………………… ………………… Head of Department Signature Date ii DEDICATION This accomplishment is dedicated to my Husband Dr. Dadson Awunyo-Vitor and my children Mawufemor and Mawuena for their prayers and support. iii ACKNOWLEDGEMENT I wish to express my sincere gratitude to my supervisor, Professor Armstrong Donkoh of the Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, who helped me in planning, guided and carefully read through the script and made useful suggestions and valuable criticisms that has propelled the completion of this dissertation.
    [Show full text]
  • Taxa Names List 6-30-21
    Insects and Related Organisms Sorted by Taxa Updated 6/30/21 Order Family Scientific Name Common Name A ACARI Acaridae Acarus siro Linnaeus grain mite ACARI Acaridae Aleuroglyphus ovatus (Troupeau) brownlegged grain mite ACARI Acaridae Rhizoglyphus echinopus (Fumouze & Robin) bulb mite ACARI Acaridae Suidasia nesbitti Hughes scaly grain mite ACARI Acaridae Tyrolichus casei Oudemans cheese mite ACARI Acaridae Tyrophagus putrescentiae (Schrank) mold mite ACARI Analgidae Megninia cubitalis (Mégnin) Feather mite ACARI Argasidae Argas persicus (Oken) Fowl tick ACARI Argasidae Ornithodoros turicata (Dugès) relapsing Fever tick ACARI Argasidae Otobius megnini (Dugès) ear tick ACARI Carpoglyphidae Carpoglyphus lactis (Linnaeus) driedfruit mite ACARI Demodicidae Demodex bovis Stiles cattle Follicle mite ACARI Demodicidae Demodex brevis Bulanova lesser Follicle mite ACARI Demodicidae Demodex canis Leydig dog Follicle mite ACARI Demodicidae Demodex caprae Railliet goat Follicle mite ACARI Demodicidae Demodex cati Mégnin cat Follicle mite ACARI Demodicidae Demodex equi Railliet horse Follicle mite ACARI Demodicidae Demodex folliculorum (Simon) Follicle mite ACARI Demodicidae Demodex ovis Railliet sheep Follicle mite ACARI Demodicidae Demodex phylloides Csokor hog Follicle mite ACARI Dermanyssidae Dermanyssus gallinae (De Geer) chicken mite ACARI Eriophyidae Abacarus hystrix (Nalepa) grain rust mite ACARI Eriophyidae Acalitus essigi (Hassan) redberry mite ACARI Eriophyidae Acalitus gossypii (Banks) cotton blister mite ACARI Eriophyidae Acalitus vaccinii
    [Show full text]
  • 1 Modern Threats to the Lepidoptera Fauna in The
    MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.
    [Show full text]
  • Samanea Saman, a Multi-Purpose Tree with Potentialities As Alternative Feed for Animals of Productive Interest
    Cuban Journal of Agricultural Science, Volume 48, Number 3, 2014. 205 Samanea saman, a multi-purpose tree with potentialities as alternative feed for animals of productive interest Denia C. Delgado1, Rosario Hera2, J. Cairo1 and Ybett Orta1 1Instituto de Ciencia Animal, Apartado Postal 24, San José de las Lajas, Mayabeque, Cuba 2 Instituto Tecnológico de Culiacán, Sinaloa, México Email: [email protected] For demonstrating the raintree (Samanea saman (Jacq.) potentiality as feed for animals of productive interest, the chemical composition was studied in the foliage, fruit and seeds: dry matter, crude protein, ash, neutral detergent fiber, acid detergent fiber, lignin, calcium and phosphorus concentration and presence of secondary metabolites. The existence of the main secondary metabolites, among them saponins and tannins was moderate or slight in all the studied fractions. Seeds contribute significantly to the nutritional value of the fruit. It is concluded that the fruits as well as the S. saman foliage contain acceptable levels of protein and minerals, moderate to slight presence of secondary metabolites and low levels of fiber, characterizing them as adequate forage resources for complementing the nutrient deficit in grazing ruminants and in other productive species. The foliage is less palatable, but presents antimicrobial and antioxidant properties that can justify its use. Key words: raintree (Samanea saman), foliage, fruits, nutritional value, alternative medicine INTRODUCTION The utilization of natural resources in a rational Virgin Islands, as well as in Pacific islands (Staples and sustainable way is a viable option for obtaining and Elevitch 2006). profits in agricultural activities (FAO 2012). Forage The raintree shows particular characteristics.
    [Show full text]
  • Albizia Lebbeck (L.) Benth
    SEED LEAFLET No. 7 September 2000 Albizia lebbeck (L.) Benth. Taxonomy and nomenclature Fruit and seed description Family: Fabaceae - Mimosoideae Fruit: pods are pale straw to light brown at maturity, Synonyms: Acacia lebbek (L.) Willd., Mimosa leb- 15-25 cm long, 3-5 cm wide, papery to leathery, flat beck L., Mimosa sirissa Roxb. and not raised or constricted between the seeds. The Vernacular/common names: East Indian walnut, pods are indehiscent. Indian siris, woman’s tongue, rattle pod, kokko (trade Seed: brown, flat, 8-10 x 6-7 mm. The 6-12 seeds are name). placed transversely in the pod. There are 7,000- 12,000 seeds per kg. Distribution and habitat Indigenous to South-East Asia and Australia. It has been widely cultivated and is now pantropical. It grows well in areas with 600-2500 mm rain/year but tolerates as little as 300 mm. The altitudinal range is 0-1800 m and mean annual temperature 20-35ºC. Grows well on fertile, well-drained loamy soils but poorly on heavy clays. It tolerates acidity, alkalinity, heavy and eroded soils, and waterlogged soils. It is nitrogen-fixing, tolerant to drought and older trees can survive grass fires and intense night frost. While fire and frost will kill off aboveground growth of young trees, new growth will normally follow. Uses Albizia lebbeck is one of the most promising fodder trees for semi-arid regions. It has leaves during a large part of the rainy season and digestibility of the twigs is considerably higher than that of most fodder trees. The concentration of crude protein is about 20% for 1, Flowering branch; 2, flower; 3, fruit.
    [Show full text]
  • Effects of Different Levels of Rain Tree (Samanea Saman) Pods in Meal Concentrate on in Vitro Fermentation by a Gas Production Technique
    Kasetsart J. (Nat. Sci.) 47 : 704 - 711 (2013) Effects of Different Levels of Rain Tree (Samanea saman) Pods in Meal Concentrate on In Vitro Fermentation by a Gas Production Technique Sareena Semae1, Phongtorn Kongmun2, Chanvit Vajrabukka2, Somchai Chanpongsang3 and Somkiert Prasanphanich2,* ABSTRACT The effect was studied of various levels of rain tree pods (RTPs) in meal concentrate on in vitro fermentation using a gas production technique. RTPs were used at levels of 0 (control), 20, 40, 60, 80 and 100% in the meal concentrate. The gas production was recorded at 2, 4, 6, 8, 10, 12, 18, 24, 36, 48, 60, 66 and 72 hr of incubation. In vitro true digestibility (IVTD), total volatile fatty acids (TVFAs), acetate (C2), propionate (C3), butyrate (C4) and ammonia nitrogen (NH3-N) were investigated. The gas production at 4 to 8 hr was significantly different (P < 0.05) among treatments. The IVTD levels in the control diet and with 20, 40 and 60% RTP levels were significantly higher (P < 0.05) than for the 80 and 100% levels of RTP. The C2 level in the control diet was the lowest but levels of C3 and C4 were higher than in the other groups. The level of NH3-N in the control diet and with levels of 20, 40 and 60% RTP levels were significantly higher (P < 0.05) than at the 80 and 100% RTP levels. This study revealed that RTPs could be an alternative feedstuff for ruminants and possibly replace meal concentrate up to 60% without any negative effect based on the in vitro study.
    [Show full text]
  • Botanical Survey of the War in the Pacific National Historical Park Guam, Mariana Islands
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 161 Botanical survey of the War in the Pacific National Historical Park Guam, Mariana Islands July 2008 Joan M. Yoshioka 1 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), NPS Inventory and Monitoring Program, Pacific Island Network, PO Box 52, Hawai`i National Park, HI 96718 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Inventory and Monitoring Program, Pacific Island Network, PO Box 52, Hawaii National Park, HI 96718, phone: 808-985-6183, fax: 808-985-6111 Recommended Citation: Yoshioka, J. M. 2008. Botanical survey of the War in the Pacific National Historical Park Guam, Mariana Islands. Pacific Cooperative Studies Unit Technical Report 161, University of Hawai`i at Manoa, Department of Botany, Honolulu, HI. Key words: Vegetation types, Vegetation management, Alien species, Endemic species, Checklist, Ferns, Flowering plants Place key words: War in the Pacific National Historical Park, Guam Editor: Clifford W. Morden, PCSU Deputy Director (Mail to: mailto:[email protected]) i Table of Contents List of Tables......................................................................................................iii List of Figures ....................................................................................................iii
    [Show full text]