ARID4A and ARID4B Regulate Male Fertility, a Functional Link to the AR and RB Pathways

Total Page:16

File Type:pdf, Size:1020Kb

ARID4A and ARID4B Regulate Male Fertility, a Functional Link to the AR and RB Pathways ARID4A and ARID4B regulate male fertility, a functional link to the AR and RB pathways Ray-Chang Wua,1, Ming Jianga, Arthur L. Beaudetb, and Mei-Yi Wua,1 aDepartment of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037; and bDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 Edited* by Bert W. O’Malley, Baylor College of Medicine, Houston, TX, and approved February 5, 2013 (received for review October 22, 2012) ARID4A and ARID4B are homologous members of the ARID (AT-rich AR functions as a ligand-dependent transcription factor, and interaction domain) gene family. ARID4A and ARID4B physically in- its transcriptional activity is known to require the interactions teract with each other. ARID4A is a retinoblastoma (RB)-binding with various coregulators that act in a sequential and combina- protein. Biological function of these interactions is still unknown. torial manner to regulate expression of the AR-responsive genes. Here, we report that mice with complete deficiency of Arid4a,com- Retinoblastoma (RB) has been reported to interact with AR and bined with haploinsufficiency of Arid4b (Arid4a−/−Arid4b+/−), functions as a coactivator to induce AR transcriptional activity fi showed progressive loss of male fertility, accompanied by hypogo- (11). The Sertoli cell-speci c Rb conditional knockout mice nadism and seminal vesicle agenesis/hypodysplasia. Arid4a and displayed progressive infertility in males (12). These infertile Arid4b are expressed mainly in Sertoli cells of testes, which implies male mice exhibited Sertoli cell dysfunction, leading to loss of that their roles in Sertoli cell function are to support spermatogen- elongating spermatids and spermatozoa, as well as loss of the integrity of the blood–testis barrier (12). esis and create the impermeable blood–testis barrier. In fact, eval- − − + − ARID4A/Arid4a and ARID4B/Arid4b are homologous members uation of germ cell development in the Arid4a / Arid4b / mice of the ARID (AT-rich interaction domain) gene family. Previously, showed spermatogenic arrest at the stages of meiotic spermato- ARID4A and ARID4B were known as RB-binding protein cytes and postmeiotic haploid spermatids. Analysis of the integrity 1(RBBP1, RBP1)(13)andRBBP1-like protein 1 (RBBP1L1) (14), – of the blood testis barrier showed increased permeability of semi- respectively. Biochemical analyses have suggested that ARID4A niferous tubules in the Arid4a−/−Arid4b+/− testes. Interestingly, − − + − and ARID4B are members of the chromatin-remodeling complex / / CELL BIOLOGY phenotypic Sertoli cell dysfunction in the Arid4a Arid4b mice, and function as transcriptional repressors upon recruitment by RB including spermatogenic failures and the impaired blood–testis bar- (15, 16). Recently, we generated the Arid4a and Arid4b knockout rier, recapitulated the defects found in the Sertoli cell-specifican- mouse models and demonstrated that ARID4A and ARID4B drogen receptor (AR) knockout mice and the Sertoli cell-specific physically and functionally interact with each other (17, 18). RB knockout mice. Investigation of the molecular mechanism iden- Studies of these mouse models provided in vivo evidence that tified several AR- and RB-responsive genes as downstream targets Arid4a and Arid4b play a role in genomic imprinting and function of ARID4A and ARID4B. Our results thus indicate that ARID4A and as leukemia suppressor genes through regulation of epigenetic ARID4B function as transcriptional coactivators for AR and RB and modifications (17, 18). play an integral part in the AR and RB regulatory pathways in- Although ARID4A and ARID4B are part of the RB complex, volved in the regulation of Sertoli cell function and male fertility. the biological relationship of ARID4A and ARID4B to RB has not been defined. In this study, using the Arid4a and Arid4b knockout male reproductive function | androgen receptor coactivator mouse model, we found that Arid4a and Arid4b play important roles in Sertoli cell function. Investigation of the transcriptional consequences after the Arid4a and Arid4b knockout identified their ale fertility is a complex process that involves growth and downstream targets overlapping the AR- and RB-responsive genes. Mformation of male reproductive organs as well as initiation We further demonstrated that ARID4A and ARID4B function as and maintenance of spermatogenesis. Spermatogenesis is a de- coactivators to enhance the AR and RB transcriptional activity. velopmental process in which mature spermatozoa are generated Our studies indicate that ARID4A and ARID4B not only physi- within seminiferous tubules of testes (reviewed in ref. 1). In cally interact with AR and RB, but also functionally link to the AR addition to the germ cells, testes contain three somatic cell types and RB pathways in regulation of male fertility. including Sertoli cells, peritubular myoid cells, and Leydig cells. Sertoli cells are the epithelium of the seminiferous tubules and Results provide both physical and nutritional supports for the developing Mice Deficiency for Arid4a and Haploinsufficiency for Arid4b Displayed germ cells (2). Between adjacent Sertoli cells, tight junctions are – Progressive Loss of Fertility in Males. To determine the involvement of formed to create the blood testis barrier, which segregates the Arid4a and Arid4b in male fertility, male mice with different Arid4a − − + − developing germ cells into the immunologically privileged adlu- and Arid4b genotypes, including Arid4a / (n = 25), Arid4b / + − + − − − + − minal compartment and prevents passage of cytotoxic substances (n = 21), Arid4a / Arid4b / (n = 19), Arid4a / Arid4b / (n = 32), into the seminiferous tubules (2, 3). and wild type (n = 15), were mated with adult wild-type females. Androgen receptor (AR), a member of the steroid hormone We monitored fertility of male mice from 2 to 12 mo of age. Adult − − + − + − + − receptor superfamily, mediates the androgen action and plays an Arid4a / , Arid4b / , Arid4a / Arid4b / , and wild-type males were − − + − important role in male fertility (4). Global AR knockout male fully fertile (Fig. 1A). In contrast, adult Arid4a / Arid4b / males mice exhibited infertility with strict defects in male reproductive organs and severe disruption of germ cell development (5). The fi fi cell-speci c AR knockout mouse models further clari ed the Author contributions: R.-C.W. and M.-Y.W. designed research; R.-C.W., M.J., and M.-Y.W. functions of AR in each specific type of testicular cells (6). performed research; R.-C.W. and A.L.B. contributed new reagents/analytic tools; R.-C.W. Sertoli cell-specific AR knockout affected the Sertoli cell func- and M.-Y.W. analyzed data; and R.-C.W. and M.-Y.W. wrote the paper. tions of nourishing and supporting the developing germ cells, The authors declare no conflict of interest. resulting in spermatogenesis arrest before first meiotic division *This Direct Submission article had a prearranged editor. and during the transition from round to elongated spermatids 1To whom correspondence may be addressed. E-mail: [email protected] or meiyiwu@gwu. (7–9). In addition, lack of AR in Sertoli cells causes impairment edu. – of the blood testis barrier (10). As expected, the Sertoli cell- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. specific AR conditional knockout male mice were infertile (7–9). 1073/pnas.1218318110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1218318110 PNAS Early Edition | 1of6 Downloaded by guest on October 2, 2021 displayed age-related reduced fertility. We found that 29 of 32 male mice were fertile at a younger age but lost their fertility at an − − + − (∼90%) Arid4a / Arid4b / males were fertile at 2 mo of age. The older age (from 3 to 12 mo of age) (Fig. 1A). These mice showed fertility decreased from 3 mo of age onward, with less than 40% of decreased size of testes with or without fused or hypotrophic − − + − the Arid4a / Arid4b / males remaining fertile at 1 y of age (Fig. seminal vesicles (Fig. 1C, mice 5 and 8). We also found that one 1A). These results showed that complete deficiency of Arid4a in male showed unilateral agenesis of seminal vesicles (Fig. 1C, combination with haploinsufficiency of Arid4b leads to progressive mouse 9), but remained fertile up to 12 mo old. infertility in male mice, suggesting that Arid4a collaborates with Measurements of testes revealed reduced testicular weights in the − − + − Arid4b to regulate male fertility. Despite the progressive loss of Arid4a / Arid4b / males compared with wild-type males at 2 and − − + − fertility, no significant difference in the litter size between the fertile 10 mo of age (Fig. 1 D, a). Testes of the infertile Arid4a / Arid4b / − − + − − − + − Arid4a / Arid4b / males and wild-type males was noted (Fig. 1B). mice weighed even less than the fertile Arid4a / Arid4b / mice − − + − Mice homozygous for Arid4b deficiency die early in embryogenesis (Fig. 1 D, a). The body weights of the Arid4a / Arid4b / mice between embryonic day 3 (E3) and E7 (17); therefore, conventional were also less than that of wild-type mice (17) (Fig. 1 D, b). It − − − − − − + − knockout mice with all four alleles mutated (Arid4a / Arid4b / ) should be noted that only the infertile Arid4a / Arid4b / males, − − + − are not available for the fertility assay. but not the fertile Arid4a / Arid4b / males, showed a significant We next examined the male reproductive organs for any mor- decrease in the ratios of testicular weight vs. body weight
Recommended publications
  • Loss of Fam60a, a Sin3a Subunit, Results in Embryonic Lethality and Is Associated with Aberrant Methylation at a Subset of Gene
    RESEARCH ARTICLE Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters Ryo Nabeshima1,2, Osamu Nishimura3,4, Takako Maeda1, Natsumi Shimizu2, Takahiro Ide2, Kenta Yashiro1†, Yasuo Sakai1, Chikara Meno1, Mitsutaka Kadota3,4, Hidetaka Shiratori1†, Shigehiro Kuraku3,4*, Hiroshi Hamada1,2* 1Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; 2Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan; 3Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; 4Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan Abstract We have examined the role of Fam60a, a gene highly expressed in embryonic stem cells, in mouse development. Fam60a interacts with components of the Sin3a-Hdac transcriptional corepressor complex, and most Fam60a–/– embryos manifest hypoplasia of visceral organs and die in utero. Fam60a is recruited to the promoter regions of a subset of genes, with the expression of these genes being either up- or down-regulated in Fam60a–/– embryos. The DNA methylation level of the Fam60a target gene Adhfe1 is maintained at embryonic day (E) 7.5 but markedly reduced at –/– *For correspondence: E9.5 in Fam60a embryos, suggesting that DNA demethylation is enhanced in the mutant. [email protected] (SK); Examination of genome-wide DNA methylation identified several differentially methylated regions, [email protected] (HH) which were preferentially hypomethylated, in Fam60a–/– embryos. Our data suggest that Fam60a is †These authors contributed required for proper embryogenesis, at least in part as a result of its regulation of DNA methylation equally to this work at specific gene promoters.
    [Show full text]
  • CDC2 Mediates Progestin Initiated Endometrial Stromal Cell Proliferation: a PR Signaling to Gene Expression Independently of Its Binding to Chromatin
    CDC2 Mediates Progestin Initiated Endometrial Stromal Cell Proliferation: A PR Signaling to Gene Expression Independently of Its Binding to Chromatin Griselda Vallejo1, Alejandro D. La Greca1., Inti C. Tarifa-Reischle1., Ana C. Mestre-Citrinovitz1, Cecilia Ballare´ 2, Miguel Beato2,3, Patricia Saragu¨ eta1* 1 Instituto de Biologı´a y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina, 2 Centre de Regulacio´ Geno`mica, (CRG), Barcelona, Spain, 3 University Pompeu Fabra (UPF), Barcelona, Spain Abstract Although non-genomic steroid receptor pathways have been studied over the past decade, little is known about the direct gene expression changes that take place as a consequence of their activation. Progesterone controls proliferation of rat endometrial stromal cells during the peri-implantation phase of pregnancy. We showed that picomolar concentration of progestin R5020 mimics this control in UIII endometrial stromal cells via ERK1-2 and AKT activation mediated by interaction of Progesterone Receptor (PR) with Estrogen Receptor beta (ERb) and without transcriptional activity of endogenous PR and ER. Here we identify early downstream targets of cytoplasmic PR signaling and their possible role in endometrial stromal cell proliferation. Microarray analysis of global gene expression changes in UIII cells treated for 45 min with progestin identified 97 up- and 341 down-regulated genes. The most over-represented molecular functions were transcription factors and regulatory factors associated with cell proliferation and cell cycle, a large fraction of which were repressors down-regulated by hormone. Further analysis verified that progestins regulate Ccnd1, JunD, Usf1, Gfi1, Cyr61, and Cdkn1b through PR- mediated activation of ligand-free ER, ERK1-2 or AKT, in the absence of genomic PR binding.
    [Show full text]
  • Inherited Variation in Mir-290 Expression Suppresses Breast Cancer Progression by Targeting the Metastasis Susceptibility Gene Arid4b
    Published OnlineFirst February 27, 2013; DOI: 10.1158/0008-5472.CAN-12-3513 Cancer Tumor and Stem Cell Biology Research Inherited Variation in miR-290 Expression Suppresses Breast Cancer Progression by Targeting the Metastasis Susceptibility Gene Arid4b Natalie Goldberger1, Renard C. Walker1, Chang Hee Kim2, Scott Winter1, and Kent W. Hunter1 Abstract The metastatic cascade is a complex and extremely inefficient process with many potential barriers. Understanding this process is of critical importance because the majority of cancer mortality is associated with metastatic disease. Recently, it has become increasingly clear that microRNAs (miRNA) play important roles in tumorigenesis and metastasis, yet few studies have examined how germline variations may dysregulate miRNAs, in turn affecting metastatic potential. To explore this possibility, the highly metastatic MMTV-PyMT mice were crossed with 25 AKXD (AKR/J Â DBA/2J) recombinant inbred strains to produce F1 progeny with varying metastatic indices. When mammary tumors from the F1 progeny were analyzed by miRNA microarray, miR-290 (containing miR-290-3p and miR-290-5p) was identified as a top candidate progression-associated miRNA. The microarray results were validated in vivo when miR-290 upregulation in two independent breast cancer cell lines suppressed both primary tumor and metastatic growth. Computational analysis identified breast cancer progression gene Arid4b as a top target of miR-290-3p, which was confirmed by luciferase reporter assay. Surprisingly, pathway analysis identified estrogen receptor (ER) signaling as the top canonical pathway affected by miR-290 upregulation. Further analysis showed that ER levels were elevated in miR-290–expressing tumors and positively correlated with apoptosis.
    [Show full text]
  • Mir-376C Promotes Carcinogenesis and Serves As a Plasma Marker for Gastric Carcinoma
    RESEARCH ARTICLE miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma Pei-Shih Hung1, Chin-Yau Chen2, Wei-Ting Chen2, Chen-Yu Kuo3, Wen-Liang Fang4,5, Kuo-Hung Huang4,5, Peng-Chih Chiu5, Su-Shun Lo2,6* 1 Department of Education and Medical Research, National Yang-Ming University Hospital, Yilan, Taiwan, 2 Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan, 3 Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, 4 Division of General Surgery, Veterans General Hospital±Taipei, Taipei, Taiwan, 5 Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan, 6 School of Medicine, National Yang-Ming University, Taipei, Taiwan a1111111111 [email protected] a1111111111 * a1111111111 a1111111111 a1111111111 Abstract Gastric carcinoma is highly prevalent throughout the world. Understanding the pathogenesis of this disease will benefit diagnosis and resolution. Studies show that miRNAs are involved in the tumorigenesis of gastric carcinoma. An initial screening followed by subsequent vali- OPEN ACCESS dation identified that miR-376c is up-regulated in gastric carcinoma tissue and the plasma Citation: Hung P-S, Chen C-Y, Chen W-T, Kuo C-Y, of patients with the disease. In addition, the urinary level of miR-376c is also significantly Fang W-L, Huang K-H, et al. (2017) miR-376c increased in gastric carcinoma patients. The plasma miR-376c level was validated as a bio- promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLoS ONE 12(5): marker for gastric carcinoma, including early stage tumors. The induction of miR-376c was e0177346.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Functional Haplotypes of ARID4A Affect Promoter Activity and Semen
    Animal Reproduction Science xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Animal Reproduction Science journal homepage: www.elsevier.com/locate/anireprosci Functional haplotypes of ARID4A affect promoter activity and semen quality of bulls Chunhong Yanga,1, Jinpeng Wanga,1, Juan Liua,1, Yan Suna, Yijun Guoa,b, Qiang Jianga, Zhihua Jua, Qican Gaoa,b, Xiuge Wanga, Jinming Huanga, ⁎ Changfa Wanga, a Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, PR China b College of Life Science, Shandong Normal University, Jinan, PR China ARTICLE INFO ABSTRACT Keywords: The AT-rich interaction domain 4 A (ARID4A) has an important role in regulating Sertoli cell Bovine function and male fertility. Its molecular mechanisms, however, remain largely unknown. In this ARID4A study, two single nucleotide polymorphisms (SNPs) (g.53 G > T, ss 1966531596, and SNP g.826 G > A, rs 210809648) were identified in the promoter region of ARID4A in 215 Chinese Haplotype Holstein bulls using polymerase chain reaction (PCR)-restriction fragment length polymorphism Semen quality and created restriction site-PCR. Results revealed that bulls with g.53 G > T-GG and g.826 G > A-G G genotype exhibited higher sperm deformity rate than those with g.53 G > T- TT and g.826 G > A-AA genotype (P < 0.01). Furthermore, three haplotypes (H1 (GG), H3 (TG), H4 (TA)) and six haplotype combinations (H1H1, H1H3, H1H4, H3H3, H3H4, H4H4) were obtained. The bulls with H4H4 exhibited lower sperm deformity rate than those with H1H1 and H1H3 (P < 0.05). In addition, results of bioinformatics analysis revealed that ARID4A has two promoters and that two SNPs of ARID4A are located in transcription factor binding sites.
    [Show full text]
  • Effects of Hydrocele on Morphology and Function of Testis
    OriginalReview ArticleArticle Effects of Hydrocele on Morphology and Function of Testis Bader Aldoah1 and Rajendran Ramaswamy2* 1Department of Surgery, University of Najran, Saudi Arabia; 2Department of Pediatric and Neonatal Surgery, Maternity and Children’s Hospital (MCH) (Under Ministry of Health), Najran, Saudi Arabia Corresponding author: Abstract Rajendran Ramaswamy, Department of Pediatric and Neonatal Surgery, Hydrocele is generally believed as innocent. But there is increasing evidence of noxious Maternity and Children’s Hospital influences of hydrocele on testis resulting in morphological, structural and functional (MCH) (Under Ministry of Health), Najran, Saudi Arabia, consequences. These effects are due to increased intrascrotal pressure and higher Tel: +966 536427602; Fax: temperature-exposure of the testis. Increased intrascrotal pressure can cause testicular 0096675293915; E-mail: [email protected] dysmorphism and even testicular atrophy. The testicular dysmorphism is reversible by early hydrocele surgery, but when persist, possibly indicate negative influence on future spermatogenesis. Spermatic cord compression by hydrocele is responsible for testicular volume increase. Such testes lose 15%-21% volume after hydrocele surgery. Tense scrotal hydrocele can cause acute scrotal pain from testicular compartment syndrome, which is relieved by evacuation of hydrocele. Higher resistivity index of subcapsular artery of testis and higher elasticity index of testicular tissue are caused by large hydrocele. As an aftermath, testis suffers ischaemia with long-term effect on spermatogenesis. High pressure of hydrocele along with ischaemia and oedema is found to result in histopathological damage to testis like total/partial arrest of spermatogenesis, small seminiferous tubules, disorganized spermatogenetic cells, basement membrane thickening and low fertilty index in children. Higher temperature exposure of testis interferes with spermatogenesis.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Epigenetic Driver Mutations in ARID1A Shape Cancer Immune Phenotype and Immunotherapy
    Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy Jing Li, … , Arul M. Chinnaiyan, Weiping Zou J Clin Invest. 2020;130(5):2712-2726. https://doi.org/10.1172/JCI134402. Research Article Immunology Graphical abstract Find the latest version: https://jci.me/134402/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy Jing Li,1,2 Weichao Wang,1,2 Yajia Zhang,3 Marcin Cieślik,3,4,5 Jipeng Guo,1,2 Mengyao Tan,3 Michael D. Green,1,2,6 Weimin Wang,1,2 Heng Lin,1,2 Wei Li,1,2 Shuang Wei,1,2 Jiajia Zhou,1,2 Gaopeng Li,1,2 Xiaojun Jing,3 Linda Vatan,1,2 Lili Zhao,7 Benjamin Bitler,8 Rugang Zhang,8 Kathleen R. Cho,3,5 Yali Dou,3,5 Ilona Kryczek,1,2 Timothy A. Chan,9 David Huntsman,10,11 Arul M. Chinnaiyan,3,6,12,13,14 and Weiping Zou1,2,3,5,15 1Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA. 2Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA. 3Department of Pathology, 4Department of Computational Medicine and Bioinformatics, 5University of Michigan Rogel Cancer Center, and 6Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA. 7Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA. 8Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA. 9Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
    [Show full text]
  • Androgen Signaling in Sertoli Cells Lavinia Vija
    Androgen Signaling in Sertoli Cells Lavinia Vija To cite this version: Lavinia Vija. Androgen Signaling in Sertoli Cells. Human health and pathology. Université Paris Sud - Paris XI, 2014. English. NNT : 2014PA11T031. tel-01079444 HAL Id: tel-01079444 https://tel.archives-ouvertes.fr/tel-01079444 Submitted on 2 Nov 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : Signalisation et Réseaux Intégratifs en Biologie Laboratoire Récepteurs Stéroïdiens, Physiopathologie Endocrinienne et Métabolique Reproduction et Développement THÈSE DE DOCTORAT Soutenue le 09/07/2014 par Lavinia Magdalena VIJA SIGNALISATION ANDROGÉNIQUE DANS LES CELLULES DE SERTOLI Directeur de thèse : Jacques YOUNG Professeur (Université Paris Sud) Composition du jury : Président du jury : Michael SCHUMACHER DR1 (Université Paris Sud) Rapporteurs : Serge LUMBROSO Professeur (Université Montpellier I) Mohamed BENAHMED DR1 (INSERM U1065, Université Nice)) Examinateurs : Nathalie CHABBERT-BUFFET Professeur (Université Pierre et Marie Curie) Gabriel
    [Show full text]
  • Non-Obstructive Azoospermia: Current and Future Perspectives
    Faculty Opinions Faculty Reviews 2021 10:(7) Non-obstructive azoospermia: current and future perspectives Tharu Tharakan 1,2X* Rong Luo 1X Channa N. Jayasena 1 Suks Minhas 2 1 Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom 2 Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, London, United Kingdom X These authors contributed equally to the work Abstract Infertility affects 1 in 6 couples, and male factor infertility has been implicated as a cause in 50% of cases. Azoospermia is defined as the absence of spermatozoa in the ejaculate and is considered the most extreme form of male factor infertility. Historically, these men were considered sterile but, with the advent of testicular sperm extraction and assisted reproductive technologies, men with azoospermia are able to biologically father their own children. Non-obstructive azoospermia (NOA) occurs when there is an impairment to spermatogenesis. This review describes the contemporary management of NOA and discusses the role of hormone stimulation therapy, surgical and embryological factors, and novel technologies such as proteomics, genomics, and artificial intelligence systems in the diagnosis and treatment of men with NOA. Moreover, we highlight that men with NOA represent a vulnerable population with an increased risk of developing cancer and cardiovascular comorbodities. Keywords Male infertility, azoospermia, genetics , artificial intelligence , sperm retrieval Peer Review The peer reviewers who approve this article are: 1. Sandro C Esteves, Androfert, Andrology & Human Reproduction Clinic, and Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, SP, Brazil Competing interests: No competing interests were disclosed.
    [Show full text]